1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
Introduction to Java Development {#tutorial_java_dev_intro}
================================
@prev_tutorial{tutorial_windows_visual_studio_image_watch}
@next_tutorial{tutorial_java_eclipse}
| | |
| -: | :- |
| Original author | Eric Christiansen and Andrey Pavlenko |
| Compatibility | OpenCV >= 3.0 |
@warning
This tutorial can contain obsolete information.
As of OpenCV 2.4.4, OpenCV supports desktop Java development using nearly the same interface as for
Android development. This guide will help you to create your first Java (or Scala) application using
OpenCV. We will use either [Apache Ant](http://ant.apache.org/) or [Simple Build Tool
(SBT)](http://www.scala-sbt.org/) to build the application.
If you want to use Eclipse head to @ref tutorial_java_eclipse. For further reading after this guide, look at
the @ref tutorial_android_dev_intro tutorials.
What we'll do in this guide
---------------------------
In this guide, we will:
- Get OpenCV with desktop Java support
- Create an Ant or SBT project
- Write a simple OpenCV application in Java or Scala
The same process was used to create the samples in the `samples/java` folder of the OpenCV
repository, so consult those files if you get lost.
Get proper OpenCV
-----------------
Starting from version 2.4.4 OpenCV includes desktop Java bindings.
### Download
The most simple way to get it is downloading the appropriate package of **version 2.4.4 or higher**
from the [OpenCV SourceForge repository](http://sourceforge.net/projects/opencvlibrary/files/).
@note Windows users can find the prebuilt files needed for Java development in the
`opencv/build/java/` folder inside the package. For other OSes it's required to build OpenCV from
sources.
Another option to get OpenCV sources is to clone [OpenCV git
repository](https://github.com/opencv/opencv/). In order to build OpenCV with Java bindings you need
JDK (Java Development Kit) (we recommend [Oracle/Sun JDK 6 or
7](http://www.oracle.com/technetwork/java/javase/downloads/)), [Apache Ant](http://ant.apache.org/)
and Python v2.6 or higher to be installed.
### Build
Let's build OpenCV:
@code{.bash}
git clone git://github.com/opencv/opencv.git
cd opencv
git checkout 2.4
mkdir build
cd build
@endcode
Generate a Makefile or a MS Visual Studio\* solution, or whatever you use for building executables
in your system:
@code{.bash}
cmake -DBUILD_SHARED_LIBS=OFF ..
@endcode
or
@code{.bat}
cmake -DBUILD_SHARED_LIBS=OFF -G "Visual Studio 10" ..
@endcode
@note When OpenCV is built as a set of **static** libraries (-DBUILD_SHARED_LIBS=OFF option) the
Java bindings dynamic library is all-sufficient, i.e. doesn't depend on other OpenCV libs, but
includes all the OpenCV code inside.
Examine the output of CMake and ensure java is one of the
modules "To be built". If not, it's likely you're missing a dependency. You should troubleshoot by
looking through the CMake output for any Java-related tools that aren't found and installing them.

@note If CMake can't find Java in your system set the JAVA_HOME environment variable with the path to installed JDK before running it. E.g.:
@code{.bash}
export JAVA_HOME=/usr/lib/jvm/java-6-oracle
cmake -DBUILD_SHARED_LIBS=OFF ..
@endcode
Now start the build:
@code{.bash}
make -j8
@endcode
or
@code{.bat}
msbuild /m OpenCV.sln /t:Build /p:Configuration=Release /v:m
@endcode
Besides all this will create a jar containing the Java interface (`bin/opencv-244.jar`) and a native
dynamic library containing Java bindings and all the OpenCV stuff (`lib/libopencv_java244.so` or
`bin/Release/opencv_java244.dll` respectively). We'll use these files later.
Java sample with Ant
--------------------
@note The described sample is provided with OpenCV library in the `opencv/samples/java/ant`
folder.
- Create a folder where you'll develop this sample application.
- In this folder create the `build.xml` file with the following content using any text editor:
@include samples/java/ant/build.xml
@note This XML file can be reused for building other Java applications. It describes a common folder structure in the lines 3 - 12 and common targets for compiling and running the application.
When reusing this XML don't forget to modify the project name in the line 1, that is also the
name of the main class (line 14). The paths to OpenCV jar and jni lib are expected as parameters
("${ocvJarDir}" in line 5 and "${ocvLibDir}" in line 37), but you can hardcode these paths for
your convenience. See [Ant documentation](http://ant.apache.org/manual/) for detailed
description of its build file format.
- Create an `src` folder next to the `build.xml` file and a `SimpleSample.java` file in it.
- Put the following Java code into the `SimpleSample.java` file:
@code{.java}
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.CvType;
import org.opencv.core.Scalar;
class SimpleSample {
static{ System.loadLibrary(Core.NATIVE_LIBRARY_NAME); }
public static void main(String[] args) {
System.out.println("Welcome to OpenCV " + Core.VERSION);
Mat m = new Mat(5, 10, CvType.CV_8UC1, new Scalar(0));
System.out.println("OpenCV Mat: " + m);
Mat mr1 = m.row(1);
mr1.setTo(new Scalar(1));
Mat mc5 = m.col(5);
mc5.setTo(new Scalar(5));
System.out.println("OpenCV Mat data:\n" + m.dump());
}
}
@endcode
- Run the following command in console in the folder containing `build.xml`:
@code{.bash}
ant -DocvJarDir=path/to/dir/containing/opencv-244.jar -DocvLibDir=path/to/dir/containing/opencv_java244/native/library
@endcode
For example:
@code{.bat}
ant -DocvJarDir=X:\opencv-2.4.4\bin -DocvLibDir=X:\opencv-2.4.4\bin\Release
@endcode
The command should initiate [re]building and running the sample. You should see on the
screen something like this:

SBT project for Java and Scala
------------------------------
Now we'll create a simple Java application using SBT. This serves as a brief introduction to those
unfamiliar with this build tool. We're using SBT because it is particularly easy and powerful.
First, download and install [SBT](http://www.scala-sbt.org/) using the instructions on its [web
site](http://www.scala-sbt.org/).
Next, navigate to a new directory where you'd like the application source to live (outside `opencv`
dir). Let's call it "JavaSample" and create a directory for it:
@code{.bash}
cd <somewhere outside opencv>
mkdir JavaSample
@endcode
Now we will create the necessary folders and an SBT project:
@code{.bash}
cd JavaSample
mkdir -p src/main/java # This is where SBT expects to find Java sources
mkdir project # This is where the build definitions live
@endcode
Now open `project/build.scala` in your favorite editor and paste the following. It defines your
project:
@code{.scala}
import sbt._
import Keys._
object JavaSampleBuild extends Build {
def scalaSettings = Seq(
scalaVersion := "2.10.0",
scalacOptions ++= Seq(
"-optimize",
"-unchecked",
"-deprecation"
)
)
def buildSettings =
Project.defaultSettings ++
scalaSettings
lazy val root = {
val settings = buildSettings ++ Seq(name := "JavaSample")
Project(id = "JavaSample", base = file("."), settings = settings)
}
}
@endcode
Now edit `project/plugins.sbt` and paste the following. This will enable auto-generation of an
Eclipse project:
@code{.scala}
addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "2.1.0")
@endcode
Now run sbt from the `JavaSample` root and from within SBT run eclipse to generate an eclipse
project:
@code{.bash}
sbt # Starts the sbt console
eclipse # Running "eclipse" from within the sbt console
@endcode
You should see something like this:

You can now import the SBT project to Eclipse using Import ... -\> Existing projects into workspace.
Whether you actually do this is optional for the guide; we'll be using SBT to build the project, so
if you choose to use Eclipse it will just serve as a text editor.
To test that everything is working, create a simple "Hello OpenCV" application. Do this by creating
a file `src/main/java/HelloOpenCV.java` with the following contents:
@code{.java}
public class HelloOpenCV {
public static void main(String[] args) {
System.out.println("Hello, OpenCV");
}
@endcode
}
Now execute run from the sbt console, or more concisely, run sbt run from the command line:
@code{.bash}
sbt run
@endcode
You should see something like this:

### Running SBT samples
Now we'll create a simple face detection application using OpenCV.
First, create a `lib/` folder and copy the OpenCV jar into it. By default, SBT adds jars in the lib
folder to the Java library search path. You can optionally rerun sbt eclipse to update your Eclipse
project.
@code{.bash}
mkdir lib
cp <opencv_dir>/build/bin/opencv_<version>.jar lib/
sbt eclipse
@endcode
Next, create the directory `src/main/resources` and download this Lena image into it:

Make sure it's called `"lena.png"`. Items in the resources directory are available to the Java
application at runtime.
Next, copy `lbpcascade_frontalface.xml` from `opencv/data/lbpcascades/` into the `resources`
directory:
@code{.bash}
cp <opencv_dir>/data/lbpcascades/lbpcascade_frontalface.xml src/main/resources/
@endcode
Now modify src/main/java/HelloOpenCV.java so it contains the following Java code:
@code{.java}
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.objdetect.CascadeClassifier;
//
// Detects faces in an image, draws boxes around them, and writes the results
// to "faceDetection.png".
//
class DetectFaceDemo {
public void run() {
System.out.println("\nRunning DetectFaceDemo");
// Create a face detector from the cascade file in the resources
// directory.
CascadeClassifier faceDetector = new CascadeClassifier(getClass().getResource("/lbpcascade_frontalface.xml").getPath());
Mat image = Imgcodecs.imread(getClass().getResource("/lena.png").getPath());
// Detect faces in the image.
// MatOfRect is a special container class for Rect.
MatOfRect faceDetections = new MatOfRect();
faceDetector.detectMultiScale(image, faceDetections);
System.out.println(String.format("Detected %s faces", faceDetections.toArray().length));
// Draw a bounding box around each face.
for (Rect rect : faceDetections.toArray()) {
Imgproc.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0));
}
// Save the visualized detection.
String filename = "faceDetection.png";
System.out.println(String.format("Writing %s", filename));
Imgcodecs.imwrite(filename, image);
}
}
public class HelloOpenCV {
public static void main(String[] args) {
System.out.println("Hello, OpenCV");
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new DetectFaceDemo().run();
}
}
@endcode
Note the call to System.loadLibrary(Core.NATIVE_LIBRARY_NAME). This command must be executed
exactly once per Java process prior to using any native OpenCV methods. If you don't call it, you
will get UnsatisfiedLink errors. You will also get errors if you try to load OpenCV when it has
already been loaded.
Now run the face detection app using \`sbt run\`:
@code{.bash}
sbt run
@endcode
You should see something like this:

It should also write the following image to `faceDetection.png`:

You're done! Now you have a sample Java application working with OpenCV, so you can start the work
on your own. We wish you good luck and many years of joyful life!
|