File: onevpl_infer_single_roi.cpp

package info (click to toggle)
opencv 4.6.0%2Bdfsg-12
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 276,172 kB
  • sloc: cpp: 1,079,020; xml: 682,526; python: 43,885; lisp: 30,943; java: 25,642; ansic: 7,968; javascript: 5,956; objc: 2,039; sh: 1,017; cs: 601; perl: 494; makefile: 179
file content (510 lines) | stat: -rw-r--r-- 20,730 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
#include <algorithm>
#include <fstream>
#include <iostream>
#include <cctype>
#include <tuple>

#include <opencv2/imgproc.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/render.hpp>
#include <opencv2/gapi/streaming/onevpl/source.hpp>
#include <opencv2/highgui.hpp> // CommandLineParser
#include <opencv2/gapi/infer/parsers.hpp>

#ifdef HAVE_INF_ENGINE
#include <inference_engine.hpp> // ParamMap

#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
#pragma comment(lib,"d3d11.lib")

// get rid of generate macro max/min/etc from DX side
#define D3D11_NO_HELPERS
#define NOMINMAX
#include <cldnn/cldnn_config.hpp>
#include <d3d11.h>
#pragma comment(lib, "dxgi")
#undef NOMINMAX
#undef D3D11_NO_HELPERS

#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
#endif // HAVE_INF_ENGINE

const std::string about =
    "This is an OpenCV-based version of oneVPLSource decoder example";
const std::string keys =
    "{ h help                       |                                           | Print this help message }"
    "{ input                        |                                           | Path to the input demultiplexed video file }"
    "{ output                       |                                           | Path to the output RAW video file. Use .avi extension }"
    "{ facem                        | face-detection-adas-0001.xml              | Path to OpenVINO IE face detection model (.xml) }"
    "{ faced                        | AUTO                                      | Target device for face detection model (e.g. AUTO, GPU, VPU, ...) }"
    "{ cfg_params                   | <prop name>:<value>;<prop name>:<value>   | Semicolon separated list of oneVPL mfxVariants which is used for configuring source (see `MFXSetConfigFilterProperty` by https://spec.oneapi.io/versions/latest/elements/oneVPL/source/index.html) }"
    "{ streaming_queue_capacity     | 1                                         | Streaming executor queue capacity. Calculated automatically if 0 }"
    "{ frames_pool_size             | 0                                         | OneVPL source applies this parameter as preallocated frames pool size}"
    "{ vpp_frames_pool_size         | 0                                         | OneVPL source applies this parameter as preallocated frames pool size for VPP preprocessing results}"
    "{ roi                          | -1,-1,-1,-1                               | Region of interest (ROI) to use for inference. Identified automatically when not set }";

namespace {
std::string get_weights_path(const std::string &model_path) {
    const auto EXT_LEN = 4u;
    const auto sz = model_path.size();
    GAPI_Assert(sz > EXT_LEN);

    auto ext = model_path.substr(sz - EXT_LEN);
    std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
            return static_cast<unsigned char>(std::tolower(c));
        });
    GAPI_Assert(ext == ".xml");
    return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}

// TODO: It duplicates infer_single_roi sample
cv::util::optional<cv::Rect> parse_roi(const std::string &rc) {
    cv::Rect rv;
    char delim[3];

    std::stringstream is(rc);
    is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height;
    if (is.bad()) {
        return cv::util::optional<cv::Rect>(); // empty value
    }
    const auto is_delim = [](char c) {
        return c == ',';
    };
    if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) {
        return cv::util::optional<cv::Rect>(); // empty value
    }
    if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) {
        return cv::util::optional<cv::Rect>(); // empty value
    }
    return cv::util::make_optional(std::move(rv));
}

#ifdef HAVE_INF_ENGINE
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11

// Since ATL headers might not be available on specific MSVS Build Tools
// we use simple `CComPtr` implementation like as `ComPtrGuard`
// which is not supposed to be the full functional replacement of `CComPtr`
// and it uses as RAII to make sure utilization is correct
template <typename COMNonManageableType>
void release(COMNonManageableType *ptr) {
    if (ptr) {
        ptr->Release();
    }
}

template <typename COMNonManageableType>
using ComPtrGuard = std::unique_ptr<COMNonManageableType, decltype(&release<COMNonManageableType>)>;

template <typename COMNonManageableType>
ComPtrGuard<COMNonManageableType> createCOMPtrGuard(COMNonManageableType *ptr = nullptr) {
    return ComPtrGuard<COMNonManageableType> {ptr, &release<COMNonManageableType>};
}


using AccelParamsType = std::tuple<ComPtrGuard<ID3D11Device>, ComPtrGuard<ID3D11DeviceContext>>;

AccelParamsType create_device_with_ctx(IDXGIAdapter* adapter) {
    UINT flags = 0;
    D3D_FEATURE_LEVEL feature_levels[] = { D3D_FEATURE_LEVEL_11_1,
                                           D3D_FEATURE_LEVEL_11_0,
                                         };
    D3D_FEATURE_LEVEL featureLevel;
    ID3D11Device* ret_device_ptr = nullptr;
    ID3D11DeviceContext* ret_ctx_ptr = nullptr;
    HRESULT err = D3D11CreateDevice(adapter, D3D_DRIVER_TYPE_UNKNOWN,
                                    nullptr, flags,
                                    feature_levels,
                                    ARRAYSIZE(feature_levels),
                                    D3D11_SDK_VERSION, &ret_device_ptr,
                                    &featureLevel, &ret_ctx_ptr);
    if (FAILED(err)) {
        throw std::runtime_error("Cannot create D3D11CreateDevice, error: " +
                                 std::to_string(HRESULT_CODE(err)));
    }

    return std::make_tuple(createCOMPtrGuard(ret_device_ptr),
                           createCOMPtrGuard(ret_ctx_ptr));
}
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
#endif // HAVE_INF_ENGINE
} // anonymous namespace

namespace custom {
G_API_NET(FaceDetector,   <cv::GMat(cv::GMat)>, "face-detector");

using GDetections = cv::GArray<cv::Rect>;
using GRect       = cv::GOpaque<cv::Rect>;
using GSize       = cv::GOpaque<cv::Size>;
using GPrims      = cv::GArray<cv::gapi::wip::draw::Prim>;

G_API_OP(ParseSSD, <GDetections(cv::GMat, GRect, GSize)>, "sample.custom.parse-ssd") {
    static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &, const cv::GOpaqueDesc &) {
        return cv::empty_array_desc();
    }
};

// TODO: It duplicates infer_single_roi sample
G_API_OP(LocateROI, <GRect(GSize)>, "sample.custom.locate-roi") {
    static cv::GOpaqueDesc outMeta(const cv::GOpaqueDesc &) {
        return cv::empty_gopaque_desc();
    }
};

G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") {
    static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) {
        return cv::empty_array_desc();
    }
};

GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) {
    // This is the place where we can run extra analytics
    // on the input image frame and select the ROI (region
    // of interest) where we want to detect our objects (or
    // run any other inference).
    //
    // Currently it doesn't do anything intelligent,
    // but only crops the input image to square (this is
    // the most convenient aspect ratio for detectors to use)

    static void run(const cv::Size& in_size,
                    cv::Rect &out_rect) {

        // Identify the central point & square size (- some padding)
        const auto center = cv::Point{in_size.width/2, in_size.height/2};
        auto sqside = std::min(in_size.width, in_size.height);

        // Now build the central square ROI
        out_rect = cv::Rect{ center.x - sqside/2
                             , center.y - sqside/2
                             , sqside
                             , sqside
                            };
    }
};

GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
    // This kernel converts the rectangles into G-API's
    // rendering primitives
    static void run(const std::vector<cv::Rect> &in_face_rcs,
                    const             cv::Rect  &in_roi,
                          std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
        out_prims.clear();
        const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
            return cv::gapi::wip::draw::Rect(rc, clr, 2);
        };
        out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan
        for (auto &&rc : in_face_rcs) {
            out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0)));   // green
        }
    }
};

GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
    static void run(const cv::Mat &in_ssd_result,
                    const cv::Rect &in_roi,
                    const cv::Size &in_parent_size,
                    std::vector<cv::Rect> &out_objects) {
        const auto &in_ssd_dims = in_ssd_result.size;
        GAPI_Assert(in_ssd_dims.dims() == 4u);

        const int MAX_PROPOSALS = in_ssd_dims[2];
        const int OBJECT_SIZE   = in_ssd_dims[3];
        GAPI_Assert(OBJECT_SIZE  == 7); // fixed SSD object size

        const cv::Size up_roi = in_roi.size();
        const cv::Rect surface({0,0}, in_parent_size);

        out_objects.clear();

        const float *data = in_ssd_result.ptr<float>();
        for (int i = 0; i < MAX_PROPOSALS; i++) {
            const float image_id   = data[i * OBJECT_SIZE + 0];
            const float label      = data[i * OBJECT_SIZE + 1];
            const float confidence = data[i * OBJECT_SIZE + 2];
            const float rc_left    = data[i * OBJECT_SIZE + 3];
            const float rc_top     = data[i * OBJECT_SIZE + 4];
            const float rc_right   = data[i * OBJECT_SIZE + 5];
            const float rc_bottom  = data[i * OBJECT_SIZE + 6];
            (void) label; // unused

            if (image_id < 0.f) {
                break;    // marks end-of-detections
            }
            if (confidence < 0.5f) {
                continue; // skip objects with low confidence
            }

            // map relative coordinates to the original image scale
            // taking the ROI into account
            cv::Rect rc;
            rc.x      = static_cast<int>(rc_left   * up_roi.width);
            rc.y      = static_cast<int>(rc_top    * up_roi.height);
            rc.width  = static_cast<int>(rc_right  * up_roi.width)  - rc.x;
            rc.height = static_cast<int>(rc_bottom * up_roi.height) - rc.y;
            rc.x += in_roi.x;
            rc.y += in_roi.y;
            out_objects.emplace_back(rc & surface);
        }
    }
};

} // namespace custom

namespace cfg {
typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line);
}

int main(int argc, char *argv[]) {

    cv::CommandLineParser cmd(argc, argv, keys);
    cmd.about(about);
    if (cmd.has("help")) {
        cmd.printMessage();
        return 0;
    }

    // get file name
    const auto file_path = cmd.get<std::string>("input");
    const auto output = cmd.get<std::string>("output");
    const auto opt_roi = parse_roi(cmd.get<std::string>("roi"));
    const auto face_model_path = cmd.get<std::string>("facem");
    const auto streaming_queue_capacity = cmd.get<uint32_t>("streaming_queue_capacity");
    const auto source_decode_queue_capacity = cmd.get<uint32_t>("frames_pool_size");
    const auto source_vpp_queue_capacity = cmd.get<uint32_t>("vpp_frames_pool_size");
    const auto device_id = cmd.get<std::string>("faced");

    // check output file extension
    if (!output.empty()) {
        auto ext = output.find_last_of(".");
        if (ext == std::string::npos || (output.substr(ext + 1) != "avi")) {
            std::cerr << "Output file should have *.avi extension for output video" << std::endl;
            return -1;
        }
    }

    // get oneVPL cfg params from cmd
    std::stringstream params_list(cmd.get<std::string>("cfg_params"));
    std::vector<cv::gapi::wip::onevpl::CfgParam> source_cfgs;
    try {
        std::string line;
        while (std::getline(params_list, line, ';')) {
            source_cfgs.push_back(cfg::create_from_string(line));
        }
    } catch (const std::exception& ex) {
        std::cerr << "Invalid cfg parameter: " << ex.what() << std::endl;
        return -1;
    }

    if (source_decode_queue_capacity != 0) {
        source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_frames_pool_size(source_decode_queue_capacity));
    }
    if (source_vpp_queue_capacity != 0) {
        source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_vpp_frames_pool_size(source_vpp_queue_capacity));
    }

    auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
        face_model_path,                 // path to topology IR
        get_weights_path(face_model_path),   // path to weights
        device_id
    };

    // Create device_ptr & context_ptr using graphic API
    // InferenceEngine requires such device & context to create its own
    // remote shared context through InferenceEngine::ParamMap in
    // GAPI InferenceEngine backend to provide interoperability with onevpl::GSource
    // So GAPI InferenceEngine backend and onevpl::GSource MUST share the same
    // device and context
    cv::util::optional<cv::gapi::wip::onevpl::Device> accel_device;
    cv::util::optional<cv::gapi::wip::onevpl::Context> accel_ctx;

#ifdef HAVE_INF_ENGINE
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
    auto dx11_dev = createCOMPtrGuard<ID3D11Device>();
    auto dx11_ctx = createCOMPtrGuard<ID3D11DeviceContext>();

    if (device_id.find("GPU") != std::string::npos) {
        auto adapter_factory = createCOMPtrGuard<IDXGIFactory>();
        {
            IDXGIFactory* out_factory = nullptr;
            HRESULT err = CreateDXGIFactory(__uuidof(IDXGIFactory),
                                        reinterpret_cast<void**>(&out_factory));
            if (FAILED(err)) {
                std::cerr << "Cannot create CreateDXGIFactory, error: " << HRESULT_CODE(err) << std::endl;
                return -1;
            }
            adapter_factory = createCOMPtrGuard(out_factory);
        }

        auto intel_adapter = createCOMPtrGuard<IDXGIAdapter>();
        UINT adapter_index = 0;
        const unsigned int refIntelVendorID = 0x8086;
        IDXGIAdapter* out_adapter = nullptr;

        while (adapter_factory->EnumAdapters(adapter_index, &out_adapter) != DXGI_ERROR_NOT_FOUND) {
            DXGI_ADAPTER_DESC desc{};
            out_adapter->GetDesc(&desc);
            if (desc.VendorId == refIntelVendorID) {
                intel_adapter = createCOMPtrGuard(out_adapter);
                break;
            }
            ++adapter_index;
        }

        if (!intel_adapter) {
            std::cerr << "No Intel GPU adapter on aboard. Exit" << std::endl;
            return -1;
        }

        std::tie(dx11_dev, dx11_ctx) = create_device_with_ctx(intel_adapter.get());
        accel_device = cv::util::make_optional(
                            cv::gapi::wip::onevpl::create_dx11_device(
                                                        reinterpret_cast<void*>(dx11_dev.get()),
                                                        device_id));
        accel_ctx = cv::util::make_optional(
                            cv::gapi::wip::onevpl::create_dx11_context(
                                                        reinterpret_cast<void*>(dx11_ctx.get())));

        // put accel type description for VPL source
        source_cfgs.push_back(cfg::create_from_string(
                                        "mfxImplDescription.AccelerationMode"
                                        ":"
                                        "MFX_ACCEL_MODE_VIA_D3D11"));
    }

#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
    // set ctx_config for GPU device only - no need in case of CPU device type
    if (accel_device.has_value() &&
        accel_device.value().get_name().find("GPU") != std::string::npos) {
        InferenceEngine::ParamMap ctx_config({{"CONTEXT_TYPE", "VA_SHARED"},
                                              {"VA_DEVICE", accel_device.value().get_ptr()} });
        face_net.cfgContextParams(ctx_config);

        // NB: consider NV12 surface because it's one of native GPU image format
        face_net.pluginConfig({{"GPU_NV12_TWO_INPUTS", "YES" }});
    }
#endif // HAVE_INF_ENGINE

    // turn on preproc
    if (accel_device.has_value() && accel_ctx.has_value()) {
        face_net.cfgPreprocessingParams(accel_device.value(),
                                        accel_ctx.value());
        std::cout << "enforce VPP preprocessing on " << device_id << std::endl;
    }

    auto kernels = cv::gapi::kernels
        < custom::OCVLocateROI
        , custom::OCVParseSSD
        , custom::OCVBBoxes>();
    auto networks = cv::gapi::networks(face_net);
    auto face_detection_args = cv::compile_args(networks, kernels);
    if (streaming_queue_capacity != 0) {
        face_detection_args += cv::compile_args(cv::gapi::streaming::queue_capacity{ streaming_queue_capacity });
    }

    // Create source
    cv::gapi::wip::IStreamSource::Ptr cap;
    try {
        if (accel_device.has_value() && accel_ctx.has_value()) {
            cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs,
                                                 accel_device.value(),
                                                 accel_ctx.value());
        } else {
            cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs);
        }
        std::cout << "oneVPL source description: " << cap->descr_of() << std::endl;
    } catch (const std::exception& ex) {
        std::cerr << "Cannot create source: " << ex.what() << std::endl;
        return -1;
    }

    cv::GMetaArg descr = cap->descr_of();
    auto frame_descr = cv::util::get<cv::GFrameDesc>(descr);
    cv::GOpaque<cv::Rect> in_roi;
    auto inputs = cv::gin(cap);

    // Now build the graph
    cv::GFrame in;
    auto size = cv::gapi::streaming::size(in);
    auto graph_inputs = cv::GIn(in);
    if (!opt_roi.has_value()) {
        // Automatically detect ROI to infer. Make it output parameter
        std::cout << "ROI is not set or invalid. Locating it automatically"
                  << std::endl;
        in_roi = custom::LocateROI::on(size);
    } else {
        // Use the value provided by user
        std::cout << "Will run inference for static region "
                  << opt_roi.value()
                  << " only"
                  << std::endl;
        graph_inputs += cv::GIn(in_roi);
        inputs += cv::gin(opt_roi.value());
    }
    auto blob = cv::gapi::infer<custom::FaceDetector>(in_roi, in);
    cv::GArray<cv::Rect> rcs = custom::ParseSSD::on(blob, in_roi, size);
    auto out_frame = cv::gapi::wip::draw::renderFrame(in, custom::BBoxes::on(rcs, in_roi));
    auto out = cv::gapi::streaming::BGR(out_frame);
    cv::GStreamingCompiled pipeline = cv::GComputation(std::move(graph_inputs), cv::GOut(out))   // and move here
                                        .compileStreaming(std::move(face_detection_args));
    // The execution part
    pipeline.setSource(std::move(inputs));
    pipeline.start();

    size_t frames = 0u;
    cv::TickMeter tm;
    cv::VideoWriter writer;
    if (!output.empty() && !writer.isOpened()) {
        const auto sz = cv::Size{frame_descr.size.width, frame_descr.size.height};
        writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
        GAPI_Assert(writer.isOpened());
    }

    cv::Mat outMat;
    tm.start();
    while (pipeline.pull(cv::gout(outMat))) {
        cv::imshow("Out", outMat);
        cv::waitKey(1);
        if (!output.empty()) {
            writer << outMat;
        }
        ++frames;
    }
    tm.stop();
    std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;

    return 0;
}


namespace cfg {
typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line) {
    using namespace cv::gapi::wip;

    if (line.empty()) {
        throw std::runtime_error("Cannot parse CfgParam from emply line");
    }

    std::string::size_type name_endline_pos = line.find(':');
    if (name_endline_pos == std::string::npos) {
        throw std::runtime_error("Cannot parse CfgParam from: " + line +
                                 "\nExpected separator \":\"");
    }

    std::string name = line.substr(0, name_endline_pos);
    std::string value = line.substr(name_endline_pos + 1);

    return cv::gapi::wip::onevpl::CfgParam::create(name, value,
                                                   /* vpp params strongly optional */
                                                   name.find("vpp.") == std::string::npos);
}
}