1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
#define BOOST_TEST_MODULE TestYoungLaplace
#include <boost/test/unit_test.hpp>
#include <array>
#include <opendrop/younglaplace.hpp>
using namespace opendrop::younglaplace;
namespace tt = boost::test_tools;
BOOST_AUTO_TEST_CASE(test_young_laplace_shape_call)
{
YoungLaplaceShape<double> shape(0.21);
double s[] = {-0.2, -0.1, 0.0, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2};
double r[] = {
-1.98671000e-1,
-9.98334690e-2,
0.00000000e+0,
9.98334690e-2,
1.98671000e-1,
3.89470759e-1,
7.18911827e-1,
1.03671685e+0,
3.53242294e-1,
};
double z[] = {
1.99230742e-2,
4.99518094e-3,
0.00000000e+0,
4.99518094e-3,
1.99230742e-2,
7.87805625e-2,
3.01185635e-1,
1.01682486e+0,
2.40649189e+0,
};
for (size_t i = 0; i < sizeof(s)/sizeof(*s); i++) {
auto x = shape(s[i]);
BOOST_TEST(x[0] == r[i], tt::tolerance(1e-3));
BOOST_TEST(x[1] == z[i], tt::tolerance(1e-3));
}
}
BOOST_AUTO_TEST_CASE(test_young_laplace_shape_copy_constructor)
{
YoungLaplaceShape<double> shape1(0.123);
// Do some calculations to populate its cache.
shape1(0.5);
// Copy constructor;
YoungLaplaceShape<double> shape2 = shape1;
for (int i = 0; i < 10; i++) {
auto x1 = shape1(i/10.0);
auto x2 = shape2(i/10.0);
BOOST_TEST(x1[0] == x2[0]);
BOOST_TEST(x1[1] == x2[1]);
}
}
BOOST_AUTO_TEST_CASE(test_young_laplace_shape_copy_assignment)
{
YoungLaplaceShape<double> shape1(0.123);
YoungLaplaceShape<double> shape2(0.456);
// Do some calculations to populate their cache.
shape1(0.5);
shape2(0.5);
// Copy assignment.
shape1 = shape2;
for (int i = 0; i < 10; i++) {
auto x1 = shape1(i/10.0);
auto x2 = shape2(i/10.0);
BOOST_TEST(x1[0] == x2[0]);
BOOST_TEST(x1[1] == x2[1]);
}
}
BOOST_AUTO_TEST_CASE(test_young_laplace_zinv)
{
YoungLaplaceShape<double> shape(0.21);
double s[] = {0.0, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2};
double z[] = {
0.00000000e+0,
4.99518094e-3,
1.99230742e-2,
7.87805625e-2,
3.01185635e-1,
1.01682486e+0,
2.40649189e+0,
};
for (size_t i = 0; i < sizeof(s)/sizeof(*s); i++) {
// z_inv() uses linear interpolation so is not very precise.
BOOST_TEST(shape.z_inv(z[i]) == s[i], tt::tolerance(5e-2));
}
}
BOOST_AUTO_TEST_CASE(test_young_laplace_zinv_outside_domain)
{
YoungLaplaceShape<double> shape(0.21);
BOOST_CHECK_THROW(shape.z_inv(-1), std::domain_error);
BOOST_CHECK_THROW(shape.z_inv(100000), std::domain_error);
}
BOOST_AUTO_TEST_CASE(test_young_laplace_closest)
{
using namespace boost::math::differentiation;
YoungLaplaceShape<double> shape(0.21);
BOOST_TEST(shape.closest(0.73, 0.27) == 0.786139, tt::tolerance(1e-5));
BOOST_TEST(shape.closest(0.0, -1.0) == 0.0, tt::tolerance(1e-10));
}
BOOST_AUTO_TEST_CASE(test_young_laplace_volume)
{
YoungLaplaceShape<double> shape(0.21);
BOOST_TEST(shape.volume(4.0) == 5.53648, tt::tolerance(1e-3));
}
BOOST_AUTO_TEST_CASE(test_young_laplace_surface_area)
{
YoungLaplaceShape<double> shape(0.21);
BOOST_TEST(shape.surface_area(4.0) == 15.9890, tt::tolerance(1e-3));
}
|