1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "operator_ext_upml.h"
#include "FDTD/operator_cylindermultigrid.h"
#include "engine_ext_upml.h"
#include "tools/array_ops.h"
#include "fparser.hh"
using namespace std;
Operator_Ext_UPML::Operator_Ext_UPML(Operator* op) : Operator_Extension(op)
{
m_GradingFunction = new FunctionParser();
//default grading function
SetGradingFunction(" -log(1e-6)*log(2.5)/(2*dl*Z*(pow(2.5,W/dl)-1)) * pow(2.5, D/dl) ");
for (int n=0; n<6; ++n)
{
m_BC[n]=0;
m_Size[n]=0;
}
for (int n=0; n<3; ++n)
{
m_StartPos[n]=0;
m_numLines[n]=0;
}
vv = NULL;
vvfo = NULL;
vvfn = NULL;
ii = NULL;
iifo = NULL;
iifn = NULL;
}
Operator_Ext_UPML::~Operator_Ext_UPML()
{
delete m_GradingFunction;
m_GradingFunction = NULL;
DeleteOp();
}
void Operator_Ext_UPML::SetBoundaryCondition(const int* BCs, const unsigned int size[6])
{
for (int n=0; n<6; ++n)
{
m_BC[n]=BCs[n];
m_Size[n]=size[n];
}
}
void Operator_Ext_UPML::SetRange(const unsigned int start[3], const unsigned int stop[3])
{
for (int n=0; n<3; ++n)
{
m_StartPos[n]=start[n];
m_numLines[n]=stop[n]-start[n]+1;
}
}
bool Operator_Ext_UPML::Create_UPML(Operator* op, const int ui_BC[6], const unsigned int ui_size[6], string gradFunc)
{
int BC[6]={ui_BC[0],ui_BC[1],ui_BC[2],ui_BC[3],ui_BC[4],ui_BC[5]};
unsigned int size[6]={ui_size[0],ui_size[1],ui_size[2],ui_size[3],ui_size[4],ui_size[5]};
//check if mesh is large enough to support the pml
for (int n=0; n<3; ++n)
if ( (size[2*n]*(BC[2*n]==3)+size[2*n+1]*(BC[2*n+1]==3)) >= op->GetNumberOfLines(n,true) )
{
cerr << "Operator_Ext_UPML::Create_UPML: Warning: Not enough lines in direction: " << n << ", resetting to PEC" << endl;
BC[2*n]=0;
size[2*n]=0;
BC[2*n+1]=0;
size[2*n+1]=0;
}
//check cylindrical coord compatiblility
Operator_Cylinder* op_cyl = dynamic_cast<Operator_Cylinder*>(op);
if (op_cyl)
{
if ((BC[0]==3) && (op_cyl->GetClosedAlpha() || op_cyl->GetR0Included()))
{
BC[0]=0;
size[0]=0;
cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in r-min direction is not possible, resetting to PEC..." << endl;
}
if ( (BC[2]==3) && (op_cyl->GetClosedAlpha()) )
{
BC[2]=0;
size[2]=0;
cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in alpha-min direction is not possible, resetting to PEC..." << endl;
}
if ( (BC[3]==3) && (op_cyl->GetClosedAlpha()) )
{
BC[3]=0;
size[3]=0;
cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in alpha-max direction is not possible, resetting to PEC..." << endl;
}
}
//check cylindrical coord compatiblility
if (dynamic_cast<Operator_CylinderMultiGrid*>(op))
{
if (BC[2]==3)
{
BC[2]=0;
size[2]=0;
cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in alpha direction is not possible for a cylindrical multi-grid, resetting to PEC..." << endl;
}
if (BC[3]==3)
{
BC[3]=0;
size[3]=0;
cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in alpha direction is not possible for a cylindrical multi-grid, resetting to PEC..." << endl;
}
}
Operator_Ext_UPML* op_ext_upml=NULL;
unsigned int start[3]={0 ,0 ,0};
unsigned int stop[3] ={op->GetNumberOfLines(0,true)-1,op->GetNumberOfLines(1,true)-1,op->GetNumberOfLines(2,true)-1};
//create a pml in x-direction over the full width of yz-space
if (BC[0]==3)
{
op_ext_upml = new Operator_Ext_UPML(op);
op_ext_upml->SetGradingFunction(gradFunc);
start[0]=0;
stop[0] =size[0];
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op->AddExtension(op_ext_upml);
}
if (BC[1]==3)
{
op_ext_upml = new Operator_Ext_UPML(op);
op_ext_upml->SetGradingFunction(gradFunc);
start[0]=op->GetNumberOfLines(0,true)-1-size[1];
stop[0] =op->GetNumberOfLines(0,true)-1;
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op->AddExtension(op_ext_upml);
}
//create a pml in y-direction over the xz-space (if a pml in x-direction already exists, skip that corner regions)
start[0]=(size[0]+1)*(BC[0]==3);
stop[0] =op->GetNumberOfLines(0,true)-1-(size[0]+1)*(BC[1]==3);
if (BC[2]==3)
{
op_ext_upml = new Operator_Ext_UPML(op);
op_ext_upml->SetGradingFunction(gradFunc);
start[1]=0;
stop[1] =size[2];
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op->AddExtension(op_ext_upml);
}
if (BC[3]==3)
{
op_ext_upml = new Operator_Ext_UPML(op);
op_ext_upml->SetGradingFunction(gradFunc);
start[1]=op->GetNumberOfLines(1,true)-1-size[3];
stop[1] =op->GetNumberOfLines(1,true)-1;
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op->AddExtension(op_ext_upml);
}
//create a pml in z-direction over the xy-space (if a pml in x- and/or y-direction already exists, skip that corner/edge regions)
start[1]=(size[2]+1)*(BC[2]==3);
stop[1] =op->GetNumberOfLines(1,true)-1-(size[3]+1)*(BC[3]==3);
//exclude x-lines that does not belong to the base multi-grid operator;
Operator_CylinderMultiGrid* op_cyl_MG = dynamic_cast<Operator_CylinderMultiGrid*>(op);
if (op_cyl_MG)
start[0] = op_cyl_MG->GetSplitPos()-1;
if (BC[4]==3)
{
op_ext_upml = new Operator_Ext_UPML(op);
op_ext_upml->SetGradingFunction(gradFunc);
start[2]=0;
stop[2] =size[4];
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op->AddExtension(op_ext_upml);
}
if (BC[5]==3)
{
op_ext_upml = new Operator_Ext_UPML(op);
op_ext_upml->SetGradingFunction(gradFunc);
start[2]=op->GetNumberOfLines(2,true)-1-size[5];
stop[2] =op->GetNumberOfLines(2,true)-1;
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op->AddExtension(op_ext_upml);
}
BC[1]=0;
size[1]=0;
//create pml extensions (in z-direction only) for child operators in cylindrical multigrid operators
while (op_cyl_MG)
{
Operator_Cylinder* op_child = op_cyl_MG->GetInnerOperator();
op_cyl_MG = dynamic_cast<Operator_CylinderMultiGrid*>(op_child);
for (int n=0; n<2; ++n)
{
start[n]=0;
stop[n]=op_child->GetNumberOfLines(n,true)-1;
}
if (op_cyl_MG)
start[0] = op_cyl_MG->GetSplitPos()-1;
if (BC[4]==3)
{
op_ext_upml = new Operator_Ext_UPML(op_child);
op_ext_upml->SetGradingFunction(gradFunc);
start[2]=0;
stop[2] =size[4];
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op_child->AddExtension(op_ext_upml);
}
if (BC[5]==3)
{
op_ext_upml = new Operator_Ext_UPML(op_child);
op_ext_upml->SetGradingFunction(gradFunc);
start[2]=op->GetNumberOfLines(2,true)-1-size[5];
stop[2] =op->GetNumberOfLines(2,true)-1;
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op_child->AddExtension(op_ext_upml);
}
}
return true;
}
void Operator_Ext_UPML::DeleteOp()
{
Delete_N_3DArray<FDTD_FLOAT>(vv,m_numLines);
vv = NULL;
Delete_N_3DArray<FDTD_FLOAT>(vvfo,m_numLines);
vvfo = NULL;
Delete_N_3DArray<FDTD_FLOAT>(vvfn,m_numLines);
vvfn = NULL;
Delete_N_3DArray<FDTD_FLOAT>(ii,m_numLines);
ii = NULL;
Delete_N_3DArray<FDTD_FLOAT>(iifo,m_numLines);
iifo = NULL;
Delete_N_3DArray<FDTD_FLOAT>(iifn,m_numLines);
iifn = NULL;
}
bool Operator_Ext_UPML::SetGradingFunction(string func)
{
if (func.empty())
return true;
m_GradFunc = func;
int res = m_GradingFunction->Parse(m_GradFunc.c_str(), "D,dl,W,Z,N");
if (res < 0) return true;
cerr << "Operator_Ext_UPML::SetGradingFunction: Warning, an error occurred parsing the pml grading function (see below) ..." << endl;
cerr << func << "\n" << string(res, ' ') << "^\n" << m_GradingFunction->ErrorMsg() << "\n";
return false;
}
void Operator_Ext_UPML::CalcGradingKappa(int ny, unsigned int pos[3], double Zm, double kappa_v[3], double kappa_i[3])
{
double depth=0;
double width=0;
for (int n=0; n<3; ++n)
{
if ((pos[n] <= m_Size[2*n]) && (m_BC[2*n]==3)) //lower pml in n-dir
{
width = (m_Op->GetDiscLine(n,m_Size[2*n]) - m_Op->GetDiscLine(n,0))*m_Op->GetGridDelta();
depth = width - (m_Op->GetDiscLine(n,pos[n]) - m_Op->GetDiscLine(n,0))*m_Op->GetGridDelta();
if ((m_Op_Cyl) && (n==1))
{
width *= m_Op_Cyl->GetDiscLine(0,pos[0]);
depth *= m_Op_Cyl->GetDiscLine(0,pos[0]);
}
if (n==ny)
depth-=m_Op->GetEdgeLength(n,pos)/2;
double vars[5] = {depth, width/m_Size[2*n], width, Zm, (double)m_Size[2*n]};
if (depth>0)
kappa_v[n] = m_GradingFunction->Eval(vars);
else
kappa_v[n]=0;
if (n==ny)
depth+=m_Op->GetEdgeLength(n,pos)/2;
if (n!=ny)
depth-=m_Op->GetEdgeLength(n,pos)/2;
if (depth<0)
depth=0;
vars[0]=depth;
if (depth>0)
kappa_i[n] = m_GradingFunction->Eval(vars);
else
kappa_i[n] = 0;
}
else if ((pos[n] >= m_Op->GetNumberOfLines(n,true) -1 -m_Size[2*n+1]) && (m_BC[2*n+1]==3)) //upper pml in n-dir
{
width = (m_Op->GetDiscLine(n,m_Op->GetNumberOfLines(n,true)-1) - m_Op->GetDiscLine(n,m_Op->GetNumberOfLines(n,true)-m_Size[2*n+1]-1))*m_Op->GetGridDelta();
depth = width - (m_Op->GetDiscLine(n,m_Op->GetNumberOfLines(n,true)-1) - m_Op->GetDiscLine(n,pos[n]))*m_Op->GetGridDelta();
if ((m_Op_Cyl) && (n==1))
{
width *= m_Op_Cyl->GetDiscLine(0,pos[0]);
depth *= m_Op_Cyl->GetDiscLine(0,pos[0]);
}
if (n==ny)
depth+=m_Op->GetEdgeLength(n,pos)/2;
double vars[5] = {depth, width/(m_Size[2*n]), width, Zm, (double)m_Size[2*n]};
if (depth>0)
kappa_v[n] = m_GradingFunction->Eval(vars);
else
kappa_v[n]=0;
if (n==ny)
depth-=m_Op->GetEdgeLength(n,pos)/2;
if (n!=ny)
depth+=m_Op->GetEdgeLength(n,pos)/2;
if (depth>width)
depth=0;
vars[0]=depth;
if (depth>0)
kappa_i[n] = m_GradingFunction->Eval(vars);
else
kappa_i[n]=0;
}
else
{
kappa_v[n] = 0;
kappa_i[n] = 0;
}
}
}
bool Operator_Ext_UPML::BuildExtension()
{
/*Calculate the upml coefficients as defined in:
Allen Taflove, computational electrodynamics - the FDTD method, third edition, chapter 7.8, pages 297-300
- modified by Thorsten Liebig to match the equivalent circuit (EC) FDTD method
- kappa is used for conductivities (instead of sigma)
*/
if (m_Op==NULL)
return false;
DeleteOp();
vv = Create_N_3DArray<FDTD_FLOAT>(m_numLines);
vvfo = Create_N_3DArray<FDTD_FLOAT>(m_numLines);
vvfn = Create_N_3DArray<FDTD_FLOAT>(m_numLines);
ii = Create_N_3DArray<FDTD_FLOAT>(m_numLines);
iifo = Create_N_3DArray<FDTD_FLOAT>(m_numLines);
iifn = Create_N_3DArray<FDTD_FLOAT>(m_numLines);
unsigned int pos[3];
unsigned int loc_pos[3];
int nP,nPP;
double kappa_v[3]={0,0,0};
double kappa_i[3]={0,0,0};
double eff_Mat[4];
double dT = m_Op->GetTimestep();
for (loc_pos[0]=0; loc_pos[0]<m_numLines[0]; ++loc_pos[0])
{
pos[0] = loc_pos[0] + m_StartPos[0];
for (loc_pos[1]=0; loc_pos[1]<m_numLines[1]; ++loc_pos[1])
{
pos[1] = loc_pos[1] + m_StartPos[1];
vector<CSPrimitives*> vPrims = m_Op->GetPrimitivesBoundBox(pos[0], pos[1], -1, CSProperties::MATERIAL);
for (loc_pos[2]=0; loc_pos[2]<m_numLines[2]; ++loc_pos[2])
{
pos[2] = loc_pos[2] + m_StartPos[2];
for (int n=0; n<3; ++n)
{
m_Op->Calc_EffMatPos(n,pos,eff_Mat,vPrims);
CalcGradingKappa(n, pos,__Z0__ ,kappa_v ,kappa_i);
nP = (n+1)%3;
nPP = (n+2)%3;
if ((kappa_v[0]+kappa_v[1]+kappa_v[2])!=0)
{
//check if pos is on PEC
if ( (m_Op->GetVV(n,pos[0],pos[1],pos[2]) + m_Op->GetVI(n,pos[0],pos[1],pos[2])) != 0 )
{
//modify the original operator to perform eq. (7.85) by the main engine (EC-FDTD: equation is multiplied by delta_n)
//the engine extension will replace the original voltages with the "voltage flux" (volt*eps0) prior to the voltage updates
//after the updates are done the extension will calculate the new voltages (see below) and place them back into the main field domain
m_Op->SetVV(n,pos[0],pos[1],pos[2], (2*__EPS0__ - kappa_v[nP]*dT) / (2*__EPS0__ + kappa_v[nP]*dT) );
m_Op->SetVI(n,pos[0],pos[1],pos[2], (2*__EPS0__*dT) / (2*__EPS0__ + kappa_v[nP]*dT) * m_Op->GetEdgeLength(n,pos) / m_Op->GetEdgeArea(n,pos) );
//operators needed by eq. (7.88) to calculate new voltages from old voltages and old and new "voltage fluxes"
GetVV(n,loc_pos) = (2*__EPS0__ - kappa_v[nPP]*dT) / (2*__EPS0__ + kappa_v[nPP]*dT);
GetVVFN(n,loc_pos) = (2*__EPS0__ + kappa_v[n]*dT) / (2*__EPS0__ + kappa_v[nPP]*dT)/eff_Mat[0];
GetVVFO(n,loc_pos) = (2*__EPS0__ - kappa_v[n]*dT) / (2*__EPS0__ + kappa_v[nPP]*dT)/eff_Mat[0];
}
}
else
{
//disable upml
GetVV(n,loc_pos) = m_Op->GetVV(n,pos[0],pos[1],pos[2]);
m_Op->SetVV(n,pos[0],pos[1],pos[2], 0 );
GetVVFO(n,loc_pos) = 0;
GetVVFN(n,loc_pos) = 1;
}
if ((kappa_i[0]+kappa_i[1]+kappa_i[2])!=0)
{
//check if pos is on PMC
if ( (m_Op->GetII(n,pos[0],pos[1],pos[2]) + m_Op->GetIV(n,pos[0],pos[1],pos[2])) != 0 )
{
//modify the original operator to perform eq. (7.89) by the main engine (EC-FDTD: equation is multiplied by delta_n)
//the engine extension will replace the original currents with the "current flux" (curr*mu0) prior to the current updates
//after the updates are done the extension will calculate the new currents (see below) and place them back into the main field domain
m_Op->SetII(n,pos[0],pos[1],pos[2], (2*__EPS0__ - kappa_i[nP]*dT) / (2*__EPS0__ + kappa_i[nP]*dT) );
m_Op->SetIV(n,pos[0],pos[1],pos[2], (2*__EPS0__*dT) / (2*__EPS0__ + kappa_i[nP]*dT) * m_Op->GetEdgeLength(n,pos,true) / m_Op->GetEdgeArea(n,pos,true) );
//operators needed by eq. (7.90) to calculate new currents from old currents and old and new "current fluxes"
GetII(n,loc_pos) = (2*__EPS0__ - kappa_i[nPP]*dT) / (2*__EPS0__ + kappa_i[nPP]*dT);
GetIIFN(n,loc_pos) = (2*__EPS0__ + kappa_i[n]*dT) / (2*__EPS0__ + kappa_i[nPP]*dT)/eff_Mat[2];
GetIIFO(n,loc_pos) = (2*__EPS0__ - kappa_i[n]*dT) / (2*__EPS0__ + kappa_i[nPP]*dT)/eff_Mat[2];
}
}
else
{
//disable upml
GetII(n,loc_pos) = m_Op->GetII(n,pos[0],pos[1],pos[2]);
m_Op->SetII(n,pos[0],pos[1],pos[2], 0 );
GetIIFO(n,loc_pos) = 0;
GetIIFN(n,loc_pos) = 1;
}
}
}
}
}
return true;
}
Engine_Extension* Operator_Ext_UPML::CreateEngineExtention()
{
Engine_Ext_UPML* eng_ext = new Engine_Ext_UPML(this);
return eng_ext;
}
void Operator_Ext_UPML::ShowStat(ostream &ostr) const
{
Operator_Extension::ShowStat(ostr);
ostr << " PML range\t\t: " << "[" << m_StartPos[0]<< "," << m_StartPos[1]<< "," << m_StartPos[2]<< "] to ["
<< m_StartPos[0]+m_numLines[0]-1 << "," << m_StartPos[1]+m_numLines[1]-1 << "," << m_StartPos[2]+m_numLines[2]-1 << "]" << endl;
ostr << " Grading function\t: \"" << m_GradFunc << "\"" << endl;
}
|