1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
function [CSX,port] = AddMSLPort( CSX, prio, portnr, materialname, start, stop, dir, evec, varargin )
% [CSX,port] = AddMSLPort( CSX, prio, portnr, materialname, start, stop, dir, evec, varargin )
%
% CSX: CSX-object created by InitCSX()
% prio: priority for excitation and probe boxes
% portnr: (integer) number of the port
% materialname: property for the MSL (created by AddMetal())
% start: 3D start rowvector for port definition
% stop: 3D end rowvector for port definition
% dir: direction of wave propagation (choices: 0, 1, 2 or 'x','y','z')
% evec: excitation vector, which defines the direction of the e-field (must be the same as used in AddExcitation())
%
% variable input:
% varargin: optional additional excitations options, see also AddExcitation
% 'ExcitePort' true/false to make the port an active feeding port (default
% is false)
% 'FeedShift' shift to port from start by a given distance in drawing
% units. Default is 0. Only active if 'ExcitePort' is set!
% 'Feed_R' Specifiy a lumped port resistance. Default is no lumped
% port resistance --> port has to end in an ABC.
% 'MeasPlaneShift' Shift the measurement plane from start t a given distance
% in drawing units. Default is the middle of start/stop.
% 'PortNamePrefix' a prefix to the port name
%
% Important: The mesh has to be already set and defined by DefineRectGrid!
%
% example:
% CSX = AddMetal( CSX, 'metal' ); %create a PEC called 'metal'
% start = [0 -width/2 height];
% stop = [length +width/2 0 ];
% [CSX,port] = AddMSLPort( CSX, 0, 1, 'metal', start, stop, 'x', [0 0 -1], ...
% 'ExcitePort', true, 'Feed_R', 50 )
% Explanation:
% - this defines a MSL in x-direction (dir='x')
% --> the wave travels along the x-direction
% - with an e-field excitation in -z-direction (evec=[0 0 -1])
% - the excitation is active and placed at x=start(1) ('ExcitePort', true)
% - a 50 Ohm lumped port resistance is placed at x=start(1) ('Feed_R', 50)
% - the width-direction is determined by the cross product of the
% direction of propagtion (dir='x') and the excitation vector
% (evec=[0 0 -1]), in this case it is the y-direction
% - the MSL-metal is created in a xy-plane at a height at z=start(3)
% --> It is important to define the MSL height in the start coordinate!
% - the ground (xy-plane, not defined by the port) is assumed at z=stop(3)
% --> The reference plane (ground) is defined in the stop coordinate!
%
% Sebastian Held <sebastian.held@gmx.de> May 13 2010
% Thorsten Liebig <thorsten.liebig@gmx.de> (c) 2011-2013
%
% See also InitCSX DefineRectGrid AddMetal AddMaterial AddExcitation calcPort
%% validate arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%check mesh
if ~isfield(CSX,'RectilinearGrid')
error 'mesh needs to be defined! Use DefineRectGrid() first!';
end
if (~isfield(CSX.RectilinearGrid,'XLines') || ~isfield(CSX.RectilinearGrid,'YLines') || ~isfield(CSX.RectilinearGrid,'ZLines'))
error 'mesh needs to be defined! Use DefineRectGrid() first!';
end
% check dir
dir = DirChar2Int(dir);
% check evec
if ~(evec(1) == evec(2) == 0) && ~(evec(1) == evec(3) == 0) && ~(evec(2) == evec(3) == 0) || (sum(evec) == 0)
error 'evec must have exactly one component ~= 0'
end
evec0 = evec ./ sum(evec); % evec0 is a unit vector
%set defaults
feed_shift = 0;
feed_R = inf; %(default is open, no resitance)
excite = false;
measplanepos = nan;
PortNamePrefix = '';
excite_args = {};
%% read optional arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for n=1:2:numel(varargin)
if (strcmp(varargin{n},'FeedShift')==1);
feed_shift = varargin{n+1};
if (numel(feed_shift)>1)
error 'FeedShift must be a scalar value'
end
elseif (strcmp(varargin{n},'Feed_R')==1);
feed_R = varargin{n+1};
if (numel(feed_shift)>1)
error 'Feed_R must be a scalar value'
end
elseif (strcmp(varargin{n},'MeasPlaneShift')==1);
measplanepos = varargin{n+1};
if (numel(feed_shift)>1)
error 'MeasPlaneShift must be a scalar value'
end
elseif (strcmp(varargin{n},'ExcitePort')==1);
if ischar(varargin{n+1})
warning('CSXCAD:AddMSLPort','depreceated: a string as excite option is no longer supported and will be removed in the future, please use true or false');
if ~isempty(excite)
excite = true;
else
excite = false;
end
else
excite = varargin{n+1};
end
elseif (strcmpi(varargin{n},'PortNamePrefix'))
PortNamePrefix = varargin{n+1};
else
excite_args{end+1} = varargin{n};
excite_args{end+1} = varargin{n+1};
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% normalize start and stop
nstart = min( [start;stop] );
nstop = max( [start;stop] );
% determine index (1, 2 or 3) of propagation (length of MSL)
idx_prop = dir + 1;
% determine index (1, 2 or 3) of width of MSL
dir = [0 0 0];
dir(idx_prop) = 1;
idx_width = abs(cross(dir,evec0)) * [1;2;3];
% determine index (1, 2 or 3) of height
idx_height = abs(evec0) * [1;2;3];
% direction of propagation
if stop(idx_prop)-start(idx_prop) > 0
direction = +1;
else
direction = -1;
end
% direction of propagation
if stop(idx_height)-start(idx_height) > 0
upsidedown = +1;
else
upsidedown = -1;
end
% create the metal/material for the MSL
MSL_start = start;
MSL_stop = stop;
MSL_stop(idx_height) = MSL_start(idx_height);
CSX = AddBox( CSX, materialname, prio, MSL_start, MSL_stop );
if isnan(measplanepos)
measplanepos = (nstart(idx_prop)+nstop(idx_prop))/2;
else
measplanepos = start(idx_prop)+direction*measplanepos;
end
% calculate position of the voltage probes
mesh{1} = sort(CSX.RectilinearGrid.XLines);
mesh{2} = sort(CSX.RectilinearGrid.YLines);
mesh{3} = sort(CSX.RectilinearGrid.ZLines);
meshlines = interp1( mesh{idx_prop}, 1:numel(mesh{idx_prop}), measplanepos, 'nearest' );
meshlines = mesh{idx_prop}(meshlines-1:meshlines+1); % get three lines (approx. at center)
if direction == -1
meshlines = fliplr(meshlines);
end
MSL_w2 = interp1( mesh{idx_width}, 1:numel(mesh{idx_width}), (nstart(idx_width)+nstop(idx_width))/2, 'nearest' );
MSL_w2 = mesh{idx_width}(MSL_w2); % get e-line at center of MSL (MSL_width/2)
v1_start(idx_prop) = meshlines(1);
v1_start(idx_width) = MSL_w2;
v1_start(idx_height) = start(idx_height);
v1_stop = v1_start;
v1_stop(idx_height) = stop(idx_height);
v2_start = v1_start;
v2_stop = v1_stop;
v2_start(idx_prop) = meshlines(2);
v2_stop(idx_prop) = meshlines(2);
v3_start = v2_start;
v3_stop = v2_stop;
v3_start(idx_prop) = meshlines(3);
v3_stop(idx_prop) = meshlines(3);
% calculate position of the current probes
idx = interp1( mesh{idx_width}, 1:numel(mesh{idx_width}), nstart(idx_width), 'nearest' );
i1_start(idx_width) = mesh{idx_width}(idx) - diff(mesh{idx_width}(idx-1:idx))/2;
idx = interp1( mesh{idx_height}, 1:numel(mesh{idx_height}), start(idx_height), 'nearest' );
i1_start(idx_height) = mesh{idx_height}(idx-1) - diff(mesh{idx_height}(idx-2:idx-1))/2;
i1_stop(idx_height) = mesh{idx_height}(idx+1) + diff(mesh{idx_height}(idx+1:idx+2))/2;
i1_start(idx_prop) = sum(meshlines(1:2))/2;
i1_stop(idx_prop) = i1_start(idx_prop);
idx = interp1( mesh{idx_width}, 1:numel(mesh{idx_width}), nstop(idx_width), 'nearest' );
i1_stop(idx_width) = mesh{idx_width}(idx) + diff(mesh{idx_width}(idx:idx+1))/2;
i2_start = i1_start;
i2_stop = i1_stop;
i2_start(idx_prop) = sum(meshlines(2:3))/2;
i2_stop(idx_prop) = i2_start(idx_prop);
% create the probes
port.U_filename{1} = [PortNamePrefix 'port_ut' num2str(portnr) 'A'];
% weight = sign(stop(idx_height)-start(idx_height))
weight = upsidedown;
CSX = AddProbe( CSX, port.U_filename{1}, 0, 'weight', weight );
CSX = AddBox( CSX, port.U_filename{1}, prio, v1_start, v1_stop );
port.U_filename{2} = [PortNamePrefix 'port_ut' num2str(portnr) 'B'];
CSX = AddProbe( CSX, port.U_filename{2}, 0, 'weight', weight );
CSX = AddBox( CSX, port.U_filename{2}, prio, v2_start, v2_stop );
port.U_filename{3} = [PortNamePrefix 'port_ut' num2str(portnr) 'C'];
CSX = AddProbe( CSX, port.U_filename{3}, 0, 'weight', weight );
CSX = AddBox( CSX, port.U_filename{3}, prio, v3_start, v3_stop );
weight = direction;
port.I_filename{1} = [PortNamePrefix 'port_it' num2str(portnr) 'A'];
CSX = AddProbe( CSX, port.I_filename{1}, 1, 'weight', weight );
CSX = AddBox( CSX, port.I_filename{1}, prio, i1_start, i1_stop );
port.I_filename{2} = [PortNamePrefix 'port_it' num2str(portnr) 'B'];
CSX = AddProbe( CSX, port.I_filename{2}, 1,'weight', weight );
CSX = AddBox( CSX, port.I_filename{2}, prio, i2_start, i2_stop );
% create port structure
port.LengthScale = 1;
if ((CSX.ATTRIBUTE.CoordSystem==1) && (idx_prop==2))
port.LengthScale = MSL_stop(idx_height);
end
port.nr = portnr;
port.type = 'MSL';
port.drawingunit = CSX.RectilinearGrid.ATTRIBUTE.DeltaUnit;
port.v_delta = diff(meshlines)*port.LengthScale;
port.i_delta = diff( meshlines(1:end-1) + diff(meshlines)/2 )*port.LengthScale;
port.direction = direction;
port.excite = 0;
port.measplanepos = abs(v2_start(idx_prop) - start(idx_prop))*port.LengthScale;
% port
% create excitation (if enabled) and port resistance
meshline = interp1( mesh{idx_prop}, 1:numel(mesh{idx_prop}), start(idx_prop) + feed_shift*direction, 'nearest' );
ex_start(idx_prop) = mesh{idx_prop}(meshline) ;
ex_start(idx_width) = nstart(idx_width);
ex_start(idx_height) = nstart(idx_height);
ex_stop(idx_prop) = ex_start(idx_prop);
ex_stop(idx_width) = nstop(idx_width);
ex_stop(idx_height) = nstop(idx_height);
port.excite = 0;
if excite
port.excite = 1;
CSX = AddExcitation( CSX, [PortNamePrefix 'port_excite_' num2str(portnr)], 0, evec, excite_args{:} );
CSX = AddBox( CSX, [PortNamePrefix 'port_excite_' num2str(portnr)], prio, ex_start, ex_stop );
end
%% MSL resitance at start of MSL line
ex_start(idx_prop) = start(idx_prop);
ex_stop(idx_prop) = ex_start(idx_prop);
if (feed_R > 0) && ~isinf(feed_R)
CSX = AddLumpedElement( CSX, [PortNamePrefix 'port_resist_' int2str(portnr)], idx_height-1, 'R', feed_R );
CSX = AddBox( CSX, [PortNamePrefix 'port_resist_' int2str(portnr)], prio, ex_start, ex_stop );
elseif isinf(feed_R)
% do nothing --> open port
elseif feed_R == 0
%port "resistance" as metal
CSX = AddBox( CSX, materialname, prio, ex_start, ex_stop );
else
error('openEMS:AddMSLPort','MSL port with resitance <= 0 it not possible');
end
end
|