1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
%
% EXAMPLE / antennas / inverted-f antenna (ifa) 2.4GHz
%
% This example demonstrates how to:
% - calculate the reflection coefficient of an ifa
% - calculate farfield of an ifa
%
% Tested with
% - Octave 3.7.5
% - openEMS v0.0.30+ (git 10.07.2013)
%
% (C) 2013 Stefan Mahr <dac922@gmx.de>
close all
clear
clc
%% setup the simulation
physical_constants;
unit = 1e-3; % all length in mm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% substrate.width
% _______________________________________________ __ substrate.
% | A ifa.l |\ __ thickness
% | |ifa.e __________________________ | |
% | | | ___ _________________| w2 | |
% | | ifa.h | | || | |
% |_V_____________|___|___||______________________| |
% | .w1 .wf\ | |
% | |.fp| \ | |
% | | feed point | |
% | | | | substrate.length
% |<- substrate.width/2 ->| | |
% | | |
% |_______________________________________________| |
% \_______________________________________________\|
%
% Note: It's not checked whether your settings make sense, so check
% graphical output carefully.
%
substrate.width = 80; % width of substrate
substrate.length = 80; % length of substrate
substrate.thickness = 1.5; % thickness of substrate
substrate.cells = 4; % use 4 cells for meshing substrate
ifa.h = 8; % height of short circuit stub
ifa.l = 22.5; % length of radiating element
ifa.w1 = 4; % width of short circuit stub
ifa.w2 = 2.5; % width of radiating element
ifa.wf = 1; % width of feed element
ifa.fp = 4; % position of feed element relative to short
% circuit stub
ifa.e = 10; % distance to edge
% substrate setup
substrate.epsR = 4.3;
substrate.kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate.epsR;
%setup feeding
feed.R = 50; %feed resistance
%open AppCSXCAD and show ifa
show = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% size of the simulation box
SimBox = [substrate.width*2 substrate.length*2 150];
%% setup FDTD parameter & excitation function
f0 = 2.5e9; % center frequency
fc = 1e9; % 20 dB corner frequency
FDTD = InitFDTD('NrTS', 60000 );
FDTD = SetGaussExcite( FDTD, f0, fc );
BC = {'MUR' 'MUR' 'MUR' 'MUR' 'MUR' 'MUR'}; % boundary conditions
FDTD = SetBoundaryCond( FDTD, BC );
%% setup CSXCAD geometry & mesh
CSX = InitCSX();
%initialize the mesh with the "air-box" dimensions
mesh.x = [-SimBox(1)/2 SimBox(1)/2];
mesh.y = [-SimBox(2)/2 SimBox(2)/2];
mesh.z = [-SimBox(3)/2 SimBox(3)/2];
%% create substrate
CSX = AddMaterial( CSX, 'substrate');
CSX = SetMaterialProperty( CSX, 'substrate', 'Epsilon',substrate.epsR, 'Kappa', substrate.kappa);
start = [-substrate.width/2 -substrate.length/2 0];
stop = [ substrate.width/2 substrate.length/2 substrate.thickness];
CSX = AddBox( CSX, 'substrate', 1, start, stop );
% add extra cells to discretize the substrate thickness
mesh.z = [linspace(0,substrate.thickness,substrate.cells+1) mesh.z];
%% create ground plane
CSX = AddMetal( CSX, 'groundplane' ); % create a perfect electric conductor (PEC)
start = [-substrate.width/2 -substrate.length/2 substrate.thickness];
stop = [ substrate.width/2 substrate.length/2-ifa.e substrate.thickness];
CSX = AddBox(CSX, 'groundplane', 10, start,stop);
%% create ifa
CSX = AddMetal( CSX, 'ifa' ); % create a perfect electric conductor (PEC)
tl = [0,substrate.length/2-ifa.e,substrate.thickness]; % translate
start = [0 0.5 0] + tl;
stop = start + [ifa.wf ifa.h-0.5 0];
CSX = AddBox( CSX, 'ifa', 10, start, stop); % feed element
start = [-ifa.fp 0 0] + tl;
stop = start + [-ifa.w1 ifa.h 0];
CSX = AddBox( CSX, 'ifa', 10, start, stop); % short circuit stub
start = [(-ifa.fp-ifa.w1) ifa.h 0] + tl;
stop = start + [ifa.l -ifa.w2 0];
CSX = AddBox( CSX, 'ifa', 10, start, stop); % radiating element
ifa_mesh = DetectEdges(CSX, [], 'SetProperty','ifa');
mesh.x = [mesh.x SmoothMeshLines(ifa_mesh.x, 0.5)];
mesh.y = [mesh.y SmoothMeshLines(ifa_mesh.y, 0.5)];
%% apply the excitation & resist as a current source
start = [0 0 0] + tl;
stop = start + [ifa.wf 0.5 0];
[CSX port] = AddLumpedPort(CSX, 5 ,1 ,feed.R, start, stop, [0 1 0], true);
%% finalize the mesh
% generate a smooth mesh with max. cell size: lambda_min / 20
mesh = DetectEdges(CSX, mesh);
mesh = SmoothMesh(mesh, c0 / (f0+fc) / unit / 20);
CSX = DefineRectGrid(CSX, unit, mesh);
%% add a nf2ff calc box; size is 3 cells away from MUR boundary condition
start = [mesh.x(4) mesh.y(4) mesh.z(4)];
stop = [mesh.x(end-3) mesh.y(end-3) mesh.z(end-3)];
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop);
%% prepare simulation folder
Sim_Path = 'tmp_IFA';
Sim_CSX = 'IFA.xml';
try confirm_recursive_rmdir(false,'local'); end
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
%% write openEMS compatible xml-file
WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
%% show the structure
if (show == 1)
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
end
%% run openEMS
RunOpenEMS( Sim_Path, Sim_CSX); %RunOpenEMS( Sim_Path, Sim_CSX, '--debug-PEC -v');
%% postprocessing & do the plots
freq = linspace( max([1e9,f0-fc]), f0+fc, 501 );
port = calcPort(port, Sim_Path, freq);
Zin = port.uf.tot ./ port.if.tot;
s11 = port.uf.ref ./ port.uf.inc;
P_in = real(0.5 * port.uf.tot .* conj( port.if.tot )); % antenna feed power
% plot feed point impedance
figure
plot( freq/1e6, real(Zin), 'k-', 'Linewidth', 2 );
hold on
grid on
plot( freq/1e6, imag(Zin), 'r--', 'Linewidth', 2 );
title( 'feed point impedance' );
xlabel( 'frequency f / MHz' );
ylabel( 'impedance Z_{in} / Ohm' );
legend( 'real', 'imag' );
% plot reflection coefficient S11
figure
plot( freq/1e6, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
grid on
title( 'reflection coefficient S_{11}' );
xlabel( 'frequency f / MHz' );
ylabel( 'reflection coefficient |S_{11}|' );
drawnow
%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%find resonance frequncy from s11
f_res_ind = find(s11==min(s11));
f_res = freq(f_res_ind);
%%
disp( 'calculating 3D far field pattern and dumping to vtk (use Paraview to visualize)...' );
thetaRange = (0:2:180);
phiRange = (0:2:360) - 180;
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, thetaRange*pi/180, phiRange*pi/180,'Verbose',1,'Outfile','3D_Pattern.h5');
plotFF3D(nf2ff)
% display power and directivity
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
disp( ['directivity: Dmax = ' num2str(nf2ff.Dmax) ' (' num2str(10*log10(nf2ff.Dmax)) ' dBi)'] );
disp( ['efficiency: nu_rad = ' num2str(100*nf2ff.Prad./real(P_in(f_res_ind))) ' %']);
E_far_normalized = nf2ff.E_norm{1} / max(nf2ff.E_norm{1}(:)) * nf2ff.Dmax;
DumpFF2VTK([Sim_Path '/3D_Pattern.vtk'],E_far_normalized,thetaRange,phiRange,1e-3);
|