1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
# -*- coding: utf-8 -*-
"""
Tutorials / CRLH_Extraction
Describtion at:
http://openems.de/index.php/Tutorial:_CRLH_Extraction
Tested with
- python 3.4
- openEMS v0.0.34+
(C) 2016 Thorsten Liebig <thorsten.liebig@gmx.de>
"""
### Import Libraries
import os, tempfile
from pylab import *
from CSXCAD import ContinuousStructure
from openEMS import openEMS
from openEMS.physical_constants import *
### Class to represent single CRLH unit cells
class CRLH_Cells:
def __init__(self, LL, LW, Top, Bot, GLT, GLB, SL, SW, VR):
self.LL = LL # Line length
self.LW = LW # Line width
self.Top = Top # top signal height
self.Bot = Bot # bottom signal height
self.GLT = GLT # gap length top
self.GLB = GLB # gap length bottom
self.SL = SL # stub length
self.SW = SW # stub width
self.VR = VR # via radius
self.props = dict() # property dictionary
self.edge_resolution = None
def createProperties(self, CSX):
for p in ['metal_top', 'metal_bot', 'via']:
self.props[p] = CSX.AddMetal(p)
def setEdgeResolution(self, res):
self.edge_resolution = res
def createCell(self, translate = [0,0,0]):
def append_mesh(mesh1, mesh2):
for n in range(3):
if mesh1[n] is None:
mesh1[n] = mesh2[n]
elif mesh2[n] is None:
continue
else:
mesh1[n] += mesh2[n]
return mesh1
translate = array(translate)
start = [-self.LL/2 , -self.LW/2, self.Top] + translate
stop = [-self.GLT/2, self.LW/2, self.Top] + translate
box = self.props['metal_top'].AddBox(start, stop, priority=10)
mesh = box.GetGridHint('x', metal_edge_res=self.edge_resolution, down_dir=False)
append_mesh(mesh, box.GetGridHint('y', metal_edge_res=self.edge_resolution) )
start = [+self.LL/2 , -self.LW/2, self.Top] + translate
stop = [+self.GLT/2, self.LW/2, self.Top] + translate
box = self.props['metal_top'].AddBox(start, stop, priority=10)
append_mesh(mesh, box.GetGridHint('x', metal_edge_res=self.edge_resolution, up_dir=False) )
start = [-(self.LL-self.GLB)/2, -self.LW/2, self.Bot] + translate
stop = [+(self.LL-self.GLB)/2, self.LW/2, self.Bot] + translate
box = self.props['metal_bot'].AddBox(start, stop, priority=10)
append_mesh(mesh, box.GetGridHint('x', metal_edge_res=self.edge_resolution) )
start = [-self.SW/2, -self.LW/2-self.SL, self.Bot] + translate
stop = [+self.SW/2, self.LW/2+self.SL, self.Bot] + translate
box = self.props['metal_bot'].AddBox(start, stop, priority=10)
append_mesh(mesh, box.GetGridHint('xy', metal_edge_res=self.edge_resolution) )
start = [0, -self.LW/2-self.SL+self.SW/2, 0 ] + translate
stop = [0, -self.LW/2-self.SL+self.SW/2, self.Bot] + translate
self.props['via'].AddCylinder(start, stop, radius=self.VR, priority=10)
start[1] *= -1
stop [1] *= -1
self.props['via'].AddCylinder(start, stop, radius=self.VR, priority=10)
return mesh
if __name__ == '__main__':
### Setup the simulation
Sim_Path = os.path.join(tempfile.gettempdir(), 'CRLH_Extraction')
post_proc_only = False
unit = 1e-6 # specify everything in um
feed_length = 30000
substrate_thickness = [1524, 101 , 254 ]
substrate_epsr = [3.48, 3.48, 3.48]
CRLH = CRLH_Cells(LL = 14e3, LW = 4e3, GLB = 1950, GLT = 4700, SL = 7800, SW = 1000, VR = 250 , \
Top = sum(substrate_thickness), \
Bot = sum(substrate_thickness[:-1]))
# frequency range of interest
f_start = 0.8e9
f_stop = 6e9
### Setup FDTD parameters & excitation function
CSX = ContinuousStructure()
FDTD = openEMS(EndCriteria=1e-5)
FDTD.SetCSX(CSX)
mesh = CSX.GetGrid()
mesh.SetDeltaUnit(unit)
CRLH.createProperties(CSX)
FDTD.SetGaussExcite((f_start+f_stop)/2, (f_stop-f_start)/2 )
BC = {'PML_8' 'PML_8' 'MUR' 'MUR' 'PEC' 'PML_8'}
FDTD.SetBoundaryCond( ['PML_8', 'PML_8', 'MUR', 'MUR', 'PEC', 'PML_8'] )
### Setup a basic mesh and create the CRLH unit cell
resolution = C0/(f_stop*sqrt(max(substrate_epsr)))/unit /30 # resolution of lambda/30
CRLH.setEdgeResolution(resolution/4)
mesh.SetLines('x', [-feed_length-CRLH.LL/2, 0, feed_length+CRLH.LL/2])
mesh.SetLines('y', [-30000, 0, 30000])
substratelines = cumsum(substrate_thickness)
mesh.SetLines('z', [0, 20000])
mesh.AddLine('z', cumsum(substrate_thickness))
mesh.AddLine('z', linspace(substratelines[-2],substratelines[-1],4))
# create the CRLH unit cell (will define additional fixed mesh lines)
mesh_hint = CRLH.createCell()
mesh.AddLine('x', mesh_hint[0])
mesh.AddLine('y', mesh_hint[1])
# Smooth the given mesh
mesh.SmoothMeshLines('all', resolution, 1.2)
### Setup the substrate layer
substratelines = [0] + substratelines.tolist()
start, stop = mesh.GetSimArea()
for n in range(len(substrate_thickness)):
sub = CSX.AddMaterial( 'substrate_{}'.format(n), epsilon=substrate_epsr[n] )
start[2] = substratelines[n]
stop [2] = substratelines[n+1]
sub.AddBox( start, stop )
### Add the feeding MSL ports
pec = CSX.AddMetal( 'PEC' )
port = [None, None]
x_lines = mesh.GetLines('x')
portstart = [ x_lines[0], -CRLH.LW/2, substratelines[-1]]
portstop = [ -CRLH.LL/2, CRLH.LW/2, 0]
port[0] = FDTD.AddMSLPort( 1, pec, portstart, portstop, 'x', 'z', excite=-1, FeedShift=10*resolution, MeasPlaneShift=feed_length/2, priority=10)
portstart = [ x_lines[-1], -CRLH.LW/2, substratelines[-1]]
portstop = [ +CRLH.LL/2 , CRLH.LW/2, 0]
port[1] = FDTD.AddMSLPort( 2, pec, portstart, portstop, 'x', 'z', MeasPlaneShift=feed_length/2, priority=10)
### Run the simulation
if 1: # debugging only
CSX_file = os.path.join(Sim_Path, 'CRLH_Extraction.xml')
if not os.path.exists(Sim_Path):
os.mkdir(Sim_Path)
CSX.Write2XML(CSX_file)
os.system(r'AppCSXCAD "{}"'.format(CSX_file))
if not post_proc_only:
FDTD.Run(Sim_Path, verbose=3, cleanup=True)
### Post-Processing
f = linspace( f_start, f_stop, 1601 )
for p in port:
p.CalcPort( Sim_Path, f, ref_impedance = 50, ref_plane_shift = feed_length)
# calculate and plot scattering parameter
s11 = port[0].uf_ref / port[0].uf_inc
s21 = port[1].uf_ref / port[0].uf_inc
plot(f/1e9,20*log10(abs(s11)),'k-' , linewidth=2, label='$S_{11}$')
plot(f/1e9,20*log10(abs(s21)),'r--', linewidth=2, label='$S_{21}$')
grid()
legend(loc=3)
ylabel('S-Parameter (dB)')
xlabel('frequency (GHz)')
ylim([-40, 2])
### Extract CRLH parameter form ABCD matrix
A = ((1+s11)*(1-s11) + s21*s21)/(2*s21)
C = ((1-s11)*(1-s11) - s21*s21)/(2*s21) / port[1].Z_ref
Y = C
Z = 2*(A-1)/C
iZ = imag(Z)
iY = imag(Y)
fse = interp(0, iZ, f)
fsh = interp(0, iY, f)
df = f[1]-f[0]
fse_idx = np.where(f>fse)[0][0]
fsh_idx = np.where(f>fsh)[0][0]
LR = 0.5*(iZ[fse_idx]-iZ[fse_idx-1])/(2*pi*df)
CL = 1/(2*pi*fse)**2/LR
CR = 0.5*(iY[fsh_idx]-iY[fsh_idx-1])/(2*pi*df)
LL = 1/(2*pi*fsh)**2/CR
print(' Series tank: CL = {:.2f} pF, LR = {:.2f} nH -> f_se = {:.2f} GHz '.format(CL*1e12, LR*1e9, fse*1e-9))
print(' Shunt tank: CR = {:.2f} pF, LL = {:.2f} nH -> f_sh = {:.2f} GHz '.format(CR*1e12, LL*1e9, fsh*1e-9))
### Calculate analytical wave-number of an inf-array of cells
w = 2*pi*f
wse = 2*pi*fse
wsh = 2*pi*fsh
beta_calc = real(arccos(1-(w**2-wse**2)*(w**2-wsh**2)/(2*w**2/CR/LR)))
# plot
figure()
beta = -angle(s21)/CRLH.LL/unit
plot(abs(beta)*CRLH.LL*unit/pi,f*1e-9,'k-', linewidth=2, label=r'$\beta_{CRLH,\ 1\ cell}$' )
grid()
plot(beta_calc/pi,f*1e-9,'c--', linewidth=2, label=r'$\beta_{CRLH,\ \infty\ cells}$')
plot(real(port[1].beta)*CRLH.LL*unit/pi,f*1e-9,'g-', linewidth=2, label=r'$\beta_{MSL}$')
ylim([1, 6])
xlabel(r'$|\beta| p / \pi$')
ylabel('frequency (GHz)')
legend(loc=2)
show()
|