1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 18 20:56:53 2015
@author: thorsten
"""
### Import Libraries
import os, tempfile
from pylab import *
from CSXCAD import ContinuousStructure
from openEMS import openEMS
from openEMS.physical_constants import *
### General parameter setup
Sim_Path = os.path.join(tempfile.gettempdir(), 'Simp_Patch')
post_proc_only = False
# patch width (resonant length) in x-direction
patch_width = 32 #
# patch length in y-direction
patch_length = 40
#substrate setup
substrate_epsR = 3.38
substrate_kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate_epsR
substrate_width = 60
substrate_length = 60
substrate_thickness = 1.524
substrate_cells = 4
#setup feeding
feed_pos = -6 #feeding position in x-direction
feed_R = 50 #feed resistance
# size of the simulation box
SimBox = np.array([200, 200, 150])
# setup FDTD parameter & excitation function
f0 = 2e9 # center frequency
fc = 1e9 # 20 dB corner frequency
### FDTD setup
## * Limit the simulation to 30k timesteps
## * Define a reduced end criteria of -40dB
FDTD = openEMS(NrTS=30000, EndCriteria=1e-4)
FDTD.SetGaussExcite( f0, fc )
FDTD.SetBoundaryCond( ['MUR', 'MUR', 'MUR', 'MUR', 'MUR', 'MUR'] )
CSX = ContinuousStructure()
FDTD.SetCSX(CSX)
mesh = CSX.GetGrid()
mesh.SetDeltaUnit(1e-3)
mesh_res = C0/(f0+fc)/1e-3/20
### Generate properties, primitives and mesh-grid
#initialize the mesh with the "air-box" dimensions
mesh.AddLine('x', [-SimBox[0]/2, SimBox[0]/2])
mesh.AddLine('y', [-SimBox[1]/2, SimBox[1]/2] )
mesh.AddLine('z', [-SimBox[2]/3, SimBox[2]*2/3] )
# create patch
patch = CSX.AddMetal( 'patch' ) # create a perfect electric conductor (PEC)
start = [-patch_width/2, -patch_length/2, substrate_thickness]
stop = [ patch_width/2 , patch_length/2, substrate_thickness]
patch.AddBox(priority=10, start=start, stop=stop) # add a box-primitive to the metal property 'patch'
FDTD.AddEdges2Grid(dirs='xy', properties=patch, metal_edge_res=mesh_res/2)
# create substrate
substrate = CSX.AddMaterial( 'substrate', epsilon=substrate_epsR, kappa=substrate_kappa)
start = [-substrate_width/2, -substrate_length/2, 0]
stop = [ substrate_width/2, substrate_length/2, substrate_thickness]
substrate.AddBox( priority=0, start=start, stop=stop )
# add extra cells to discretize the substrate thickness
mesh.AddLine('z', linspace(0,substrate_thickness,substrate_cells+1))
# create ground (same size as substrate)
gnd = CSX.AddMetal( 'gnd' ) # create a perfect electric conductor (PEC)
start[2]=0
stop[2] =0
gnd.AddBox(start, stop, priority=10)
FDTD.AddEdges2Grid(dirs='xy', properties=gnd)
# apply the excitation & resist as a current source
start = [feed_pos, 0, 0]
stop = [feed_pos, 0, substrate_thickness]
port = FDTD.AddLumpedPort(1, feed_R, start, stop, 'z', 1.0, priority=5, edges2grid='xy')
mesh.SmoothMeshLines('all', mesh_res, 1.4)
# Add the nf2ff recording box
nf2ff = FDTD.CreateNF2FFBox()
### Run the simulation
if 0: # debugging only
CSX_file = os.path.join(Sim_Path, 'simp_patch.xml')
if not os.path.exists(Sim_Path):
os.mkdir(Sim_Path)
CSX.Write2XML(CSX_file)
os.system(r'AppCSXCAD "{}"'.format(CSX_file))
if not post_proc_only:
FDTD.Run(Sim_Path, verbose=3, cleanup=True)
### Post-processing and plotting
f = np.linspace(max(1e9,f0-fc),f0+fc,401)
port.CalcPort(Sim_Path, f)
s11 = port.uf_ref/port.uf_inc
s11_dB = 20.0*np.log10(np.abs(s11))
figure()
plot(f/1e9, s11_dB, 'k-', linewidth=2, label='$S_{11}$')
grid()
legend()
ylabel('S-Parameter (dB)')
xlabel('Frequency (GHz)')
idx = np.where((s11_dB<-10) & (s11_dB==np.min(s11_dB)))[0]
if not len(idx)==1:
print('No resonance frequency found for far-field calulation')
else:
f_res = f[idx[0]]
theta = np.arange(-180.0, 180.0, 2.0)
phi = [0., 90.]
nf2ff_res = nf2ff.CalcNF2FF(Sim_Path, f_res, theta, phi, center=[0,0,1e-3])
figure()
E_norm = 20.0*np.log10(nf2ff_res.E_norm[0]/np.max(nf2ff_res.E_norm[0])) + nf2ff_res.Dmax[0]
plot(theta, np.squeeze(E_norm[:,0]), 'k-', linewidth=2, label='xz-plane')
plot(theta, np.squeeze(E_norm[:,1]), 'r--', linewidth=2, label='yz-plane')
grid()
ylabel('Directivity (dBi)')
xlabel('Theta (deg)')
title('Frequency: {} GHz'.format(f_res/1e9))
legend()
Zin = port.uf_tot/port.if_tot
figure()
plot(f/1e9, np.real(Zin), 'k-', linewidth=2, label='$\Re\{Z_{in}\}$')
plot(f/1e9, np.imag(Zin), 'r--', linewidth=2, label='$\Im\{Z_{in}\}$')
grid()
legend()
ylabel('Zin (Ohm)')
xlabel('Frequency (GHz)')
show()
|