1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "useful.h"
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <stdio.h>
#include <stdlib.h>
#include <iomanip>
#include <sstream>
#include <boost/algorithm/string.hpp>
#include <iostream>
unsigned int CalcNyquistNum(double fmax, double dT)
{
if (fmax==0) return UINT_MAX;
if (dT==0) return 1;
double T0 = 1/fmax;
return floor(T0/2/dT);
}
double CalcNyquistFrequency(unsigned int nyquist, double dT)
{
if (nyquist==0) return 0;
if (dT==0) return 0;
return floor(1/(double)nyquist/2/dT);
}
std::vector<unsigned int> AssignJobs2Threads(unsigned int jobs, unsigned int nrThreads, bool RemoveEmpty)
{
std::vector<unsigned int> jpt; //jobs per thread
unsigned int ui_jpt = jobs/nrThreads;
for (unsigned int n=0; n<nrThreads; ++n)
{
jpt.push_back(ui_jpt);
jobs-=ui_jpt;
}
for (unsigned int n=0; n<nrThreads; ++n)
{
if (jobs>0)
{
++jpt.at(n);
--jobs;
}
}
if (jobs>0)
std::cerr << "AssignJobs2Threads: Error, " << jobs << " remain to be assigned, this should not have happened..." << std::endl;
if (RemoveEmpty)
{
while (jpt.back()==0)
jpt.pop_back();
}
return jpt;
}
std::vector<float> SplitString2Float(std::string str, std::string delimiter)
{
std::vector<float> v_f;
std::vector<std::string> results;
boost::split(results, str, boost::is_any_of(delimiter));
for (size_t n=0;n<results.size();++n)
{
std::istringstream is(results.at(n));
float num;
if (is >> num)
v_f.push_back(num);
}
return v_f;
}
std::vector<double> SplitString2Double(std::string str, std::string delimiter)
{
std::vector<double> v_f;
std::vector<std::string> results;
boost::split(results, str, boost::is_any_of(delimiter));
for (size_t n=0;n<results.size();++n)
{
std::istringstream is(results.at(n));
double num;
if (is >> num)
v_f.push_back(num);
}
return v_f;
}
bool CrossProd(const double *v1, const double *v2, double* out)
{
int nP,nPP;
for (int n=0;n<3;++n)
{
nP = (n+1)%3;
nPP = (n+2)%3;
out[n] = v1[nP]*v2[nPP] - v1[nPP]*v2[nP];
}
return ((out[0]+out[1]+out[2])>0);
}
double ScalarProd(const double *v1, const double *v2)
{
double out=0;
for (int n=0;n<3;++n)
out+=v1[n]*v2[n];
return out;
}
double Determinant(const double *mat)
{
return mat[0]*mat[4]*mat[8]+mat[1]*mat[5]*mat[6]+mat[2]*mat[3]*mat[7]-mat[2]*mat[4]*mat[6]-mat[1]*mat[3]*mat[8]-mat[0]*mat[5]*mat[7];
}
double* Invert(const double* in, double* out)
{
double det = Determinant(in);
out[0] = (in[4]*in[8]-in[5]*in[7])/det;
out[1] = (in[2]*in[7]-in[1]*in[8])/det;
out[2] = (in[1]*in[5]-in[2]*in[4])/det;
out[3] = (in[5]*in[6]-in[3]*in[8])/det;
out[4] = (in[0]*in[8]-in[2]*in[6])/det;
out[5] = (in[2]*in[3]-in[0]*in[5])/det;
out[6] = (in[3]*in[7]-in[4]*in[6])/det;
out[7] = (in[1]*in[6]-in[0]*in[7])/det;
out[8] = (in[0]*in[4]-in[1]*in[3])/det;
return out;
}
int LinePlaneIntersection(const double *p0, const double *p1, const double *p2, const double *l_start, const double *l_stop, double* is_point, double &dist)
{
dist = 0;
double mat[9];
for (int n=0;n<3;++n)
{
is_point[n] = 0;
mat[3*n] = l_start[n]-l_stop[n];
mat[3*n+1] = p1[n]-p0[n];
mat[3*n+2] = p2[n]-p0[n];
}
double det = Determinant(mat);
if (fabs(det)<1e-50)
return -1;
double inv_mat[9];
Invert(mat, inv_mat);
double t=0,u=0,v=0;
for (int n=0;n<3;++n)
{
t+=inv_mat[n]*(l_start[n]-p0[n]);
u+=inv_mat[3+n]*(l_start[n]-p0[n]);
v+=inv_mat[6+n]*(l_start[n]-p0[n]);
}
dist = t;
for (int n=0;n<3;++n)
is_point[n] = l_start[n]*(1-dist) + l_stop[n]*dist;
if ((u<0) || (u>1) || (v<0) || (v>1))
return 1;
if ((t<0) || (t>1))
return 2;
return 0;
}
|