1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
function [CSX,port] = AddCoaxialPort( CSX, prio, portnr, pec_name, materialname, start, stop, dir, r_i, r_o, r_os, varargin )
% function [CSX,port] = AddCoaxialPort( CSX, prio, portnr, pec_name, materialname, start, stop, dir, r_i, r_o, r_os, varargin )
%
% CSX: CSX-object created by InitCSX()
% prio: priority for excitation and probe boxes
% portnr: (integer) number of the port
% pec_name: metal property for coaxial inner/outer conductor (created by AddMetal())
% materialname: substrate property for coaxial line (created by AddMaterial())
% Note: this may be empty for an "air filled" coaxial line
% start: 3D start rowvector for coaxial cable axis
% stop: 3D end rowvector for coaxial cable axis
% dir: direction of wave propagation (choices: 0, 1, 2 or 'x','y','z')
% r_i: inner coaxial radius (in drawing unit)
% r_o: outer coaxial radius (in drawing unit)
% r_os: outer shell coaxial radius (in drawing unit)
%
% variable input:
% varargin: optional additional excitations options, see also AddExcitation
% 'ExciteAmp' excitation amplitude of transversal electric field profile,
% set to 0 (default) for a passive port
% 'FeedShift' shift to port from start by a given distance in drawing
% units. Default is 0. Only active if 'ExciteAmp' is set!
% 'Feed_R' Specifiy a lumped port resistance. Default is no lumped
% port resistance --> port has to end in an ABC.
% 'MeasPlaneShift' Shift the measurement plane from start t a given distance
% in drawing units. Default is the middle of start/stop.
% 'PortNamePrefix' a prefix to the port name
%
% the mesh must be already initialized
%
% example:
%
% openEMS matlab interface
% -----------------------
% Thorsten Liebig <thorsten.liebig@gmx.de> (c) 2013
%
% See also InitCSX AddMetal AddMaterial AddExcitation calcPort
%% validate arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%check mesh
if ~isfield(CSX,'RectilinearGrid')
error 'mesh needs to be defined! Use DefineRectGrid() first!';
end
if (~isfield(CSX.RectilinearGrid,'XLines') || ~isfield(CSX.RectilinearGrid,'YLines') || ~isfield(CSX.RectilinearGrid,'ZLines'))
error 'mesh needs to be defined! Use DefineRectGrid() first!';
end
% check dir
dir = DirChar2Int(dir);
%set defaults
feed_shift = 0;
feed_R = inf; %(default is open, no resitance)
excite_amp = 0;
measplanepos = nan;
PortNamePrefix = '';
excite_args = {};
%% read optional arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for n=1:2:numel(varargin)
if (strcmp(varargin{n},'FeedShift')==1);
feed_shift = varargin{n+1};
if (numel(feed_shift)>1)
error 'FeedShift must be a scalar value'
end
elseif (strcmp(varargin{n},'Feed_R')==1);
feed_R = varargin{n+1};
if (numel(feed_shift)>1)
error 'Feed_R must be a scalar value'
end
elseif (strcmp(varargin{n},'MeasPlaneShift')==1);
measplanepos = varargin{n+1};
if (numel(feed_shift)>1)
error 'MeasPlaneShift must be a scalar value'
end
elseif (strcmp(varargin{n},'ExciteAmp')==1);
excite_amp = varargin{n+1};
elseif (strcmpi(varargin{n},'PortNamePrefix'))
PortNamePrefix = varargin{n+1};
else
excite_args{end+1} = varargin{n};
excite_args{end+1} = varargin{n+1};
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine index (1, 2 or 3) of propagation (length of MSL)
idx_prop_n = dir + 1;
idx_prop_nP = mod((dir+1),3)+1;
idx_prop_nPP = mod((dir+2),3)+1;
% direction of propagation
if stop(idx_prop_n)-start(idx_prop_n) > 0
direction = +1;
else
direction = -1;
end
% create the metal for the coaxial line
CSX = AddCylinder( CSX, pec_name, prio, start, stop, r_i );
CSX = AddCylindricalShell( CSX, pec_name, prio, start, stop, 0.5*(r_o+r_os), r_os-r_o );
% create the material filling for the coaxial line
if (~isempty(materialname))
CSX = AddCylindricalShell( CSX, materialname, prio-1, start, stop, 0.5*(r_o+r_i), r_o-r_i );
end
if isnan(measplanepos)
measplanepos = (start(idx_prop_n)+stop(idx_prop_n))/2;
else
measplanepos = start(idx_prop_n)+direction*measplanepos;
end
% calculate position of the voltage probes
mesh{1} = sort(unique(CSX.RectilinearGrid.XLines));
mesh{2} = sort(unique(CSX.RectilinearGrid.YLines));
mesh{3} = sort(unique(CSX.RectilinearGrid.ZLines));
meshlines = interp1( mesh{idx_prop_n}, 1:numel(mesh{idx_prop_n}), measplanepos, 'nearest' );
meshlines = mesh{idx_prop_n}(meshlines-1:meshlines+1); % get three lines (approx. at center)
if direction == -1
meshlines = fliplr(meshlines);
end
v1_start(idx_prop_n) = meshlines(1);
v1_start(idx_prop_nP) = start(idx_prop_nP)+r_i;
v1_start(idx_prop_nPP) = start(idx_prop_nPP);
v1_stop = v1_start;
v1_stop(idx_prop_nP) = start(idx_prop_nP)+r_o;
v2_start = v1_start;
v2_stop = v1_stop;
v2_start(idx_prop_n) = meshlines(2);
v2_stop(idx_prop_n) = meshlines(2);
v3_start = v2_start;
v3_stop = v2_stop;
v3_start(idx_prop_n) = meshlines(3);
v3_stop(idx_prop_n) = meshlines(3);
% calculate position of the current probes
i1_start(idx_prop_n) = 0.5*(meshlines(1)+meshlines(2));
i1_start(idx_prop_nP) = start(idx_prop_nP)-r_i-0.1*(r_o-r_i);
i1_start(idx_prop_nPP) = start(idx_prop_nPP)-r_i-0.1*(r_o-r_i);
i1_stop = i1_start;
i1_stop(idx_prop_nP) = start(idx_prop_nP)+r_i+0.1*(r_o-r_i);
i1_stop(idx_prop_nPP) = start(idx_prop_nPP)+r_i+0.1*(r_o-r_i);
i2_start = i1_start;
i2_stop = i1_stop;
i2_start(idx_prop_n) = 0.5*(meshlines(2)+meshlines(3));
i2_stop(idx_prop_n) = 0.5*(meshlines(2)+meshlines(3));
% create the probes
port.U_filename{1} = [PortNamePrefix 'port_ut' num2str(portnr) 'A'];
weight = 1;
CSX = AddProbe( CSX, port.U_filename{1}, 0, 'weight', weight );
CSX = AddBox( CSX, port.U_filename{1}, prio, v1_start, v1_stop );
port.U_filename{2} = [PortNamePrefix 'port_ut' num2str(portnr) 'B'];
CSX = AddProbe( CSX, port.U_filename{2}, 0, 'weight', weight );
CSX = AddBox( CSX, port.U_filename{2}, prio, v2_start, v2_stop );
port.U_filename{3} = [PortNamePrefix 'port_ut' num2str(portnr) 'C'];
CSX = AddProbe( CSX, port.U_filename{3}, 0, 'weight', weight );
CSX = AddBox( CSX, port.U_filename{3}, prio, v3_start, v3_stop );
weight = direction;
port.I_filename{1} = [PortNamePrefix 'port_it' num2str(portnr) 'A'];
CSX = AddProbe( CSX, port.I_filename{1}, 1, 'weight', weight );
CSX = AddBox( CSX, port.I_filename{1}, prio, i1_start, i1_stop );
port.I_filename{2} = [PortNamePrefix 'port_it' num2str(portnr) 'B'];
CSX = AddProbe( CSX, port.I_filename{2}, 1,'weight', weight );
CSX = AddBox( CSX, port.I_filename{2}, prio, i2_start, i2_stop );
% create port structure
port.LengthScale = 1;
port.nr = portnr;
port.type = 'Coaxial';
port.drawingunit = CSX.RectilinearGrid.ATTRIBUTE.DeltaUnit;
port.v_delta = diff(meshlines)*port.LengthScale;
port.i_delta = diff( meshlines(1:end-1) + diff(meshlines)/2 )*port.LengthScale;
port.direction = direction;
port.excite = 0;
port.measplanepos = abs(v2_start(idx_prop_n) - start(idx_prop_n))*port.LengthScale;
port.r_i = r_i;
port.r_o = r_o;
% create excitation (if enabled) and port resistance
meshline = interp1( mesh{idx_prop_n}, 1:numel(mesh{idx_prop_n}), start(idx_prop_n) + feed_shift*direction, 'nearest' );
min_cell_prop = min(diff(mesh{idx_prop_n}));
ex_start = start;
ex_start(idx_prop_n) = mesh{idx_prop_n}(meshline) - 0.01*min_cell_prop;
ex_stop = ex_start;
ex_stop(idx_prop_n) = mesh{idx_prop_n}(meshline) + 0.01*min_cell_prop;
port.excite = 0;
if (excite_amp~=0)
dir_names={'x','y','z'};
nameX = ['(' dir_names{idx_prop_nP} '-' num2str(start(idx_prop_nP)) ')'];
nameY = ['(' dir_names{idx_prop_nPP} '-' num2str(start(idx_prop_nPP)) ')'];
func_Ex = [ nameX '/(' nameX '*' nameX '+' nameY '*' nameY ') * (sqrt(' nameX '*' nameX '+' nameY '*' nameY ')<' num2str(r_o) ') * (sqrt(' nameX '*' nameX '+' nameY '*' nameY ')>' num2str(r_i) ')'];
func_Ey = [ nameY '/(' nameX '*' nameX '+' nameY '*' nameY ') * (sqrt(' nameX '*' nameX '+' nameY '*' nameY ')<' num2str(r_o) ') * (sqrt(' nameX '*' nameX '+' nameY '*' nameY ')>' num2str(r_i) ')'];
func_E{idx_prop_n} = 0;
func_E{idx_prop_nP} = func_Ex;
func_E{idx_prop_nPP} = func_Ey;
port.excite = 1;
evec = [1 1 1];
evec(idx_prop_n) = 0;
CSX = AddExcitation( CSX, [PortNamePrefix 'port_excite_' num2str(portnr)], 0, evec, excite_args{:} );
CSX = SetExcitationWeight(CSX, [PortNamePrefix 'port_excite_' num2str(portnr)], func_E );
CSX = AddCylindricalShell(CSX,[PortNamePrefix 'port_excite_' num2str(portnr)],0 ,ex_start,ex_stop,0.5*(r_i+r_o),(r_o-r_i));
end
%% resitance at start of coaxial line
ex_start = start;
ex_stop = stop;
ex_stop(idx_prop_n) = ex_start(idx_prop_n);
if (feed_R > 0) && ~isinf(feed_R)
error 'feed_R not yet implemented'
elseif isinf(feed_R)
% do nothing --> open port
elseif feed_R == 0
%port "resistance" as metal
CSX = AddBox( CSX, pec_name, prio, ex_start, ex_stop );
CSX = AddCylindricalShell(CSX, pec_name, prio ,ex_start, ex_stop, 0.5*(r_i+r_o),(r_o-r_i));
else
error('openEMS:AddMSLPort','MSL port with resitance <= 0 it not possible');
end
end
|