1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
function Dump2VTK(filename, fields, mesh, fieldname, varargin)
% Dump2VTK(filename, fields, mesh, fieldname, varargin)
%
% Dump fields extraced from an hdf5 file to a vtk file format
%
% possible arguments:
% 'NativeDump': 0 (default) / 1, dump in native coordinate system
% 'CloseAlpha': 0 (default) / 1, repeat first/last line in
% alpha-direction for a full cylindrical mesh
%
% example:
%
%
% openEMS matlab interface
% -----------------------
% author: Thorsten Liebig
%
% See also ReadHDF5FieldData ReadHDF5Mesh GetField_TD2FD GetField_Interpolation
NativeDump = 0;
CloseAlpha = 0;
for n=1:2:numel(varargin)
if (strcmp(varargin{n},'NativeDump')==1);
NativeDump = varargin{n+1};
elseif (strcmp(varargin{n},'CloseAlpha')==1);
CloseAlpha = varargin{n+1};
end
end
x = mesh.lines{1};
y = mesh.lines{2};
z = mesh.lines{3};
fid = fopen(filename,'w+');
% set nan values to zero
ind = find(isnan(fields));
if (~isempty(ind))
warning('openEMS:Dump2VTK','field contains nan, setting to zero');
fields(ind)=0;
end
% set inf values to zero
ind = find(isinf(fields));
if (~isempty(ind))
warning('openEMS:Dump2VTK','field contains inf, setting to zero');
fields(ind)=0;
end
if ((CloseAlpha~=0) && (mesh.type==1) && (range(y)<2*pi))
y(end+1) = y(1)+2*pi;
fields(:,end+1,:,:) = fields(:,1,:,:);
end
if (mesh.type==0) %write cartesian mesh to vtk
fprintf(fid,'# vtk DataFile Version 2.0\n');
fprintf(fid,'Rectilinear Grid by matlab-interface of openEMS\n');
fprintf(fid,'ASCII\n');
fprintf(fid,'DATASET RECTILINEAR_GRID\n');
fprintf(fid,'DIMENSIONS %d %d %d\n',numel(x),numel(y),numel(z));
fprintf(fid,'X_COORDINATES %d double\n',numel(x));
fprintf(fid,'%e',x(1));
for n=2:numel(x)
fprintf(fid,' %e',x(n));
end
fprintf(fid,'\n');
fprintf(fid,'Y_COORDINATES %d double\n',numel(y));
fprintf(fid,'%e',y(1));
for n=2:numel(y)
fprintf(fid,' %e',y(n));
end
fprintf(fid,'\n');
fprintf(fid,'Z_COORDINATES %d double\n',numel(z));
fprintf(fid,'%e',z(1));
for n=2:numel(z)
fprintf(fid,' %e',z(n));
end
elseif (mesh.type==1) %write cylindrical mesh to vtk
fprintf(fid,'# vtk DataFile Version 3.0\n');
fprintf(fid,'Structured Grid by matlab-interface of openEMS\n');
fprintf(fid,'ASCII\n');
fprintf(fid,'DATASET STRUCTURED_GRID\n');
fprintf(fid,'DIMENSIONS %d %d %d\n',numel(x),numel(y),numel(z));
fprintf(fid,'POINTS %d double\n',numel(x)*numel(y)*numel(z));
for nz=1:numel(z)
for ny=1:numel(y)
for nx=1:numel(x)
fprintf(fid,'%e %e %e\n',x(nx)*cos(y(ny)),x(nx)*sin(y(ny)),z(nz));
end
end
end
if ((ndims(fields)==4) && (NativeDump==0))
[R A Z] = ndgrid(x,y,z);
sinA = sin(A);
cosA = cos(A);
field_CC(:,:,:,1) = fields(:,:,:,1) .* cosA - fields(:,:,:,2) .* sinA;
field_CC(:,:,:,2) = fields(:,:,:,1) .* sinA + fields(:,:,:,2) .* cosA;
field_CC(:,:,:,3) = fields(:,:,:,3);
fields = field_CC;
clear R A Z sinA cosA field_CC
end
elseif (mesh.type==2) %write spherical mesh to vtk
fprintf(fid,'# vtk DataFile Version 3.0\n');
fprintf(fid,'Structured Grid by matlab-interface of openEMS\n');
fprintf(fid,'ASCII\n');
fprintf(fid,'DATASET STRUCTURED_GRID\n');
fprintf(fid,'DIMENSIONS %d %d %d\n',numel(x),numel(y),numel(z));
fprintf(fid,'POINTS %d double\n',numel(x)*numel(y)*numel(z));
for nz=1:numel(z)
for ny=1:numel(y)
for nx=1:numel(x)
fprintf(fid,'%e %e %e\n',...
x(nx)*sin(y(ny))*cos(z(nz)),...
x(nx)*sin(y(ny))*sin(z(nz)),...
x(nx)*cos(y(ny)));
end
end
end
if ((ndims(fields)==4) && (NativeDump==0))
[R T A] = ndgrid(x,y,z);
sinA = sin(A);
cosA = cos(A);
sinT = sin(T);
cosT = cos(T);
field_CC(:,:,:,1) = fields(:,:,:,1) .* sinT .* cosA + fields(:,:,:,2) .*cosT .* cosA - fields(:,:,:,3) .* sinA;
field_CC(:,:,:,2) = fields(:,:,:,1) .* sinT .* cosA + fields(:,:,:,2) .*cosT .* sinA + fields(:,:,:,3) .* cosA;
field_CC(:,:,:,3) = fields(:,:,:,1) .* cosT - fields(:,:,:,2) .*sinT;
fields = field_CC;
clear R A T sinA cosA sinT cosT field_CC
end
end
fprintf(fid,'\n\n');
fprintf(fid,'POINT_DATA %d\n',numel(x)*numel(y)*numel(z));
% dump vector field data
if (size(fields,4)>1)
if (nargin>3)
fprintf(fid,['VECTORS ' fieldname ' double\n']);
else
fprintf(fid,'VECTORS field double\n');
end
fclose(fid);
field_x = fields(:,:,:,1);
field_y = fields(:,:,:,2);
field_z = fields(:,:,:,3);
clear fields
dumpField(:,1) = field_x(:);
dumpField(:,2) = field_y(:);
dumpField(:,3) = field_z(:);
save('-ascii','-append',filename,'dumpField')
return
elseif (size(fields,4)==1) % scalar field
if (nargin>3)
fprintf(fid,['SCALARS ' fieldname ' double 1\nLOOKUP_TABLE default\n']);
else
fprintf(fid,'SCALARS field double 1\nLOOKUP_TABLE default\n');
end
fclose(fid);
dumpField = fields(:);
save('-ascii','-append',filename,'dumpField')
return
end
fclose(fid);
|