File: CRLH_LeakyWaveAnt.m

package info (click to toggle)
openems 0.0.35%2Bgit20190103.6a75e98%2Bdfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,424 kB
  • sloc: cpp: 40,407; python: 2,028; yacc: 580; makefile: 458; lex: 350; sh: 176; ruby: 19
file content (168 lines) | stat: -rw-r--r-- 6,048 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
%
% Tutorials / CRLH_LeakyWaveAnt
%
% Describtion at:
% http://openems.de/index.php/Tutorial:_CRLH_Leaky_Wave_Antenna
%
% Tested with
%  - Matlab 2011a / Octave 4.0
%  - openEMS v0.0.33
%
% (C) 2011-2015 Thorsten Liebig <thorsten.liebig@gmx.de>

close all
clear
clc

%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
physical_constants;
unit = 1e-6; % specify everything in um

feed_length = 20000;

substrate_thickness = [1524 101 254];
substrate_epsr = [3.48 3.48 3.48];
substrate_tanD = [1 1 1]*1e-3;

N_Cells = 8;        %number of CRLH unit cells

CRLH.LL = 14e3;     %CRLH totel (line) length
CRLH.LW = 4e3;      %CRLH unit cell width (without the stubs)
CRLH.GLB = 1950;    %CRLH gap width bottom layer
CRLH.GLT = 4700;    %CRLH gap width top layer
CRLH.SL = 7800;     %CRLH stub length (bottom layer, both sides)
CRLH.SW = 1000;     %CRLH stub width  (bottom layer, both sides)
CRLH.VR = 250;      %CRLH via hole radius (stub -> ground)
CRLH.TopSig = sum(substrate_thickness);  %top layer height
CRLH.BottomSig = CRLH.TopSig - substrate_thickness(end);  %bottom layer height

substrate_width = CRLH.LW + 2*CRLH.SL;
Air_Spacer = 30000;

% frequency range of interest
f_start = 1e9;
f_stop  = 6e9;

% frequencies to calculate the 3D radiation pattern
f_rad = (1.9:0.05:4.2)*1e9;
nf2ff_resolution = c0/max(f_rad)/unit/15;

%% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD('EndCriteria', 1e-3);
FDTD = SetGaussExcite( FDTD, (f_start+f_stop)/2, (f_stop-f_start)/2 );
BC   = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'};
FDTD = SetBoundaryCond( FDTD, BC );

%% Setup a basic mesh and create the CRLH unit cell
CSX = InitCSX();
resolution = c0/(f_stop*sqrt(max(substrate_epsr)))/unit /30; % resolution of lambda/30

mesh.x = [-feed_length-(N_Cells*CRLH.LL)/2-Air_Spacer -feed_length-(N_Cells*CRLH.LL)/2 0 feed_length+(N_Cells*CRLH.LL)/2 feed_length+(N_Cells*CRLH.LL)/2+Air_Spacer];
mesh.y = [-Air_Spacer-substrate_width/2 0 Air_Spacer+substrate_width/2];
substratelines = cumsum(substrate_thickness);
mesh.z = [-0.5*Air_Spacer 0 cumsum(substrate_thickness) linspace(substratelines(end-1),substratelines(end),4) Air_Spacer];

% create the CRLH unit cells (will define additional fixed mesh lines)
pos_x = -(N_Cells*CRLH.LL)/2 + CRLH.LL/2;
for n=1:N_Cells
    [CSX mesh] = CreateCRLH(CSX, mesh, CRLH, resolution/4, [pos_x 0 0]);
    pos_x = pos_x + CRLH.LL;
end

% Smooth the given mesh
mesh = SmoothMesh(mesh, resolution, 1.5, 'algorithm',[1 3]);
CSX = DefineRectGrid( CSX, unit, mesh );

%% Setup the substrate layer
substratelines = [0 substratelines];
for n=1:numel(substrate_thickness)
    CSX = AddMaterial( CSX, ['substrate' int2str(n)] );
    CSX = SetMaterialProperty( CSX, ['substrate' int2str(n)], 'Epsilon', substrate_epsr(n), 'Kappa', substrate_tanD(n)*substrate_epsr(n)*EPS0*2*pi*3e9 );
    start = [-feed_length-(N_Cells*CRLH.LL)/2, -substrate_width/2, substratelines(n)];
    stop  = [+feed_length+(N_Cells*CRLH.LL)/2,  substrate_width/2, substratelines(n+1)];
    CSX = AddBox( CSX, ['substrate' int2str(n)], 0, start, stop );
end

%% add the feeding MSL ports
%ground plane
CSX = AddMetal( CSX, 'ground' );
start = [-feed_length-(N_Cells*CRLH.LL)/2, -substrate_width/2, 0];
stop  = [+feed_length+(N_Cells*CRLH.LL)/2,  substrate_width/2, 0];
CSX = AddBox( CSX, 'ground', 0, start, stop );

CSX = AddMetal( CSX, 'PEC' );
portstart = [ -feed_length-(N_Cells*CRLH.LL)/2 , -CRLH.LW/2, substratelines(end)];
portstop  = [ -(N_Cells*CRLH.LL)/2,  CRLH.LW/2, 0];
[CSX,port{1}] = AddMSLPort( CSX, 999, 1, 'PEC', portstart, portstop, 0, [0 0 -1], 'ExcitePort', true, 'MeasPlaneShift',  feed_length/2, 'Feed_R', 50);

portstart = [ feed_length+(N_Cells*CRLH.LL)/2 , -CRLH.LW/2, substratelines(end)];
portstop  = [ +(N_Cells*CRLH.LL)/2,   CRLH.LW/2, 0];
[CSX,port{2}] = AddMSLPort( CSX, 999, 2, 'PEC', portstart, portstop, 0, [0 0 -1], 'MeasPlaneShift',  feed_length/2, 'Feed_R', 50 );

%% nf2ff calc
start = [mesh.x(1)   mesh.y(1)   mesh.z(1)  ] + 10*resolution;
stop  = [mesh.x(end) mesh.y(end) mesh.z(end)] - 10*resolution;
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, 'OptResolution', nf2ff_resolution);

%% write/show/run the openEMS compatible xml-file
Sim_Path = 'tmp_CRLH_LeakyWave';
Sim_CSX = 'CRLH.xml';

[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder

WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
RunOpenEMS( Sim_Path, Sim_CSX );

%% post-processing
close all
f = linspace( f_start, f_stop, 1601 );
port = calcPort( port, Sim_Path, f, 'RefPlaneShift', feed_length*unit);

s11 = port{1}.uf.ref./ port{1}.uf.inc;
s21 = port{2}.uf.ref./ port{1}.uf.inc;

plot(f/1e9,20*log10(abs(s11)),'k-','LineWidth',2);
hold on;
grid on;
plot(f/1e9,20*log10(abs(s21)),'r--','LineWidth',2);
l = legend('S_{11}','S_{21}','Location','Best');
set(l,'FontSize',12);
ylabel('S-Parameter (dB)','FontSize',12);
xlabel('frequency (GHz) \rightarrow','FontSize',12);
ylim([-40 2]);

drawnow

%% calculate 3D pattern
phi = 0:2:360;
theta = 0:2:180;

disp( 'calculating 3D far field pattern...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_rad, theta*pi/180, phi*pi/180, 'Outfile','3D_Pattern.h5', 'Mode', 0,'Verbose',1);

%%
P_in = interp1(f, port{1}.P_acc, f_rad);

figure()

[AX,H1,H2] = plotyy(f_rad/1e9,nf2ff.Dmax',f_rad/1e9,100*nf2ff.Prad'./P_in,'plot');
grid on
xlabel( 'frequency (GHz)' );
set(get(AX(1),'Ylabel'),'String','directivity (dBi)')
set(get(AX(2),'Ylabel'),'String','radiation efficiency (%)')
set(H1,'Linewidth',2)
set(H2,'Linewidth',2)
set(H1,'Marker','*')
set(H2,'Marker','s')

drawnow

%%
disp( 'dumping 3D far field pattern to vtk, use Paraview to visualize...' );
for n=1:numel(f_rad)
    E_far_normalized_3D = nf2ff.E_norm{n} / max(max(nf2ff.E_norm{n})) * nf2ff.Dmax(n);
    DumpFF2VTK( [Sim_Path '/FF_Pattern_' int2str(f_rad(n)/1e6) 'MHz.vtk'],E_far_normalized_3D,theta,phi,'scale',1e-3);
end