1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
%
% Tutorials / CRLH_LeakyWaveAnt
%
% Describtion at:
% http://openems.de/index.php/Tutorial:_CRLH_Leaky_Wave_Antenna
%
% Tested with
% - Matlab 2011a / Octave 4.0
% - openEMS v0.0.33
%
% (C) 2011-2015 Thorsten Liebig <thorsten.liebig@gmx.de>
close all
clear
clc
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
physical_constants;
unit = 1e-6; % specify everything in um
feed_length = 20000;
substrate_thickness = [1524 101 254];
substrate_epsr = [3.48 3.48 3.48];
substrate_tanD = [1 1 1]*1e-3;
N_Cells = 8; %number of CRLH unit cells
CRLH.LL = 14e3; %CRLH totel (line) length
CRLH.LW = 4e3; %CRLH unit cell width (without the stubs)
CRLH.GLB = 1950; %CRLH gap width bottom layer
CRLH.GLT = 4700; %CRLH gap width top layer
CRLH.SL = 7800; %CRLH stub length (bottom layer, both sides)
CRLH.SW = 1000; %CRLH stub width (bottom layer, both sides)
CRLH.VR = 250; %CRLH via hole radius (stub -> ground)
CRLH.TopSig = sum(substrate_thickness); %top layer height
CRLH.BottomSig = CRLH.TopSig - substrate_thickness(end); %bottom layer height
substrate_width = CRLH.LW + 2*CRLH.SL;
Air_Spacer = 30000;
% frequency range of interest
f_start = 1e9;
f_stop = 6e9;
% frequencies to calculate the 3D radiation pattern
f_rad = (1.9:0.05:4.2)*1e9;
nf2ff_resolution = c0/max(f_rad)/unit/15;
%% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD('EndCriteria', 1e-3);
FDTD = SetGaussExcite( FDTD, (f_start+f_stop)/2, (f_stop-f_start)/2 );
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'};
FDTD = SetBoundaryCond( FDTD, BC );
%% Setup a basic mesh and create the CRLH unit cell
CSX = InitCSX();
resolution = c0/(f_stop*sqrt(max(substrate_epsr)))/unit /30; % resolution of lambda/30
mesh.x = [-feed_length-(N_Cells*CRLH.LL)/2-Air_Spacer -feed_length-(N_Cells*CRLH.LL)/2 0 feed_length+(N_Cells*CRLH.LL)/2 feed_length+(N_Cells*CRLH.LL)/2+Air_Spacer];
mesh.y = [-Air_Spacer-substrate_width/2 0 Air_Spacer+substrate_width/2];
substratelines = cumsum(substrate_thickness);
mesh.z = [-0.5*Air_Spacer 0 cumsum(substrate_thickness) linspace(substratelines(end-1),substratelines(end),4) Air_Spacer];
% create the CRLH unit cells (will define additional fixed mesh lines)
pos_x = -(N_Cells*CRLH.LL)/2 + CRLH.LL/2;
for n=1:N_Cells
[CSX mesh] = CreateCRLH(CSX, mesh, CRLH, resolution/4, [pos_x 0 0]);
pos_x = pos_x + CRLH.LL;
end
% Smooth the given mesh
mesh = SmoothMesh(mesh, resolution, 1.5, 'algorithm',[1 3]);
CSX = DefineRectGrid( CSX, unit, mesh );
%% Setup the substrate layer
substratelines = [0 substratelines];
for n=1:numel(substrate_thickness)
CSX = AddMaterial( CSX, ['substrate' int2str(n)] );
CSX = SetMaterialProperty( CSX, ['substrate' int2str(n)], 'Epsilon', substrate_epsr(n), 'Kappa', substrate_tanD(n)*substrate_epsr(n)*EPS0*2*pi*3e9 );
start = [-feed_length-(N_Cells*CRLH.LL)/2, -substrate_width/2, substratelines(n)];
stop = [+feed_length+(N_Cells*CRLH.LL)/2, substrate_width/2, substratelines(n+1)];
CSX = AddBox( CSX, ['substrate' int2str(n)], 0, start, stop );
end
%% add the feeding MSL ports
%ground plane
CSX = AddMetal( CSX, 'ground' );
start = [-feed_length-(N_Cells*CRLH.LL)/2, -substrate_width/2, 0];
stop = [+feed_length+(N_Cells*CRLH.LL)/2, substrate_width/2, 0];
CSX = AddBox( CSX, 'ground', 0, start, stop );
CSX = AddMetal( CSX, 'PEC' );
portstart = [ -feed_length-(N_Cells*CRLH.LL)/2 , -CRLH.LW/2, substratelines(end)];
portstop = [ -(N_Cells*CRLH.LL)/2, CRLH.LW/2, 0];
[CSX,port{1}] = AddMSLPort( CSX, 999, 1, 'PEC', portstart, portstop, 0, [0 0 -1], 'ExcitePort', true, 'MeasPlaneShift', feed_length/2, 'Feed_R', 50);
portstart = [ feed_length+(N_Cells*CRLH.LL)/2 , -CRLH.LW/2, substratelines(end)];
portstop = [ +(N_Cells*CRLH.LL)/2, CRLH.LW/2, 0];
[CSX,port{2}] = AddMSLPort( CSX, 999, 2, 'PEC', portstart, portstop, 0, [0 0 -1], 'MeasPlaneShift', feed_length/2, 'Feed_R', 50 );
%% nf2ff calc
start = [mesh.x(1) mesh.y(1) mesh.z(1) ] + 10*resolution;
stop = [mesh.x(end) mesh.y(end) mesh.z(end)] - 10*resolution;
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, 'OptResolution', nf2ff_resolution);
%% write/show/run the openEMS compatible xml-file
Sim_Path = 'tmp_CRLH_LeakyWave';
Sim_CSX = 'CRLH.xml';
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
RunOpenEMS( Sim_Path, Sim_CSX );
%% post-processing
close all
f = linspace( f_start, f_stop, 1601 );
port = calcPort( port, Sim_Path, f, 'RefPlaneShift', feed_length*unit);
s11 = port{1}.uf.ref./ port{1}.uf.inc;
s21 = port{2}.uf.ref./ port{1}.uf.inc;
plot(f/1e9,20*log10(abs(s11)),'k-','LineWidth',2);
hold on;
grid on;
plot(f/1e9,20*log10(abs(s21)),'r--','LineWidth',2);
l = legend('S_{11}','S_{21}','Location','Best');
set(l,'FontSize',12);
ylabel('S-Parameter (dB)','FontSize',12);
xlabel('frequency (GHz) \rightarrow','FontSize',12);
ylim([-40 2]);
drawnow
%% calculate 3D pattern
phi = 0:2:360;
theta = 0:2:180;
disp( 'calculating 3D far field pattern...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_rad, theta*pi/180, phi*pi/180, 'Outfile','3D_Pattern.h5', 'Mode', 0,'Verbose',1);
%%
P_in = interp1(f, port{1}.P_acc, f_rad);
figure()
[AX,H1,H2] = plotyy(f_rad/1e9,nf2ff.Dmax',f_rad/1e9,100*nf2ff.Prad'./P_in,'plot');
grid on
xlabel( 'frequency (GHz)' );
set(get(AX(1),'Ylabel'),'String','directivity (dBi)')
set(get(AX(2),'Ylabel'),'String','radiation efficiency (%)')
set(H1,'Linewidth',2)
set(H2,'Linewidth',2)
set(H1,'Marker','*')
set(H2,'Marker','s')
drawnow
%%
disp( 'dumping 3D far field pattern to vtk, use Paraview to visualize...' );
for n=1:numel(f_rad)
E_far_normalized_3D = nf2ff.E_norm{n} / max(max(nf2ff.E_norm{n})) * nf2ff.Dmax(n);
DumpFF2VTK( [Sim_Path '/FF_Pattern_' int2str(f_rad(n)/1e6) 'MHz.vtk'],E_far_normalized_3D,theta,phi,'scale',1e-3);
end
|