File: Circ_Waveguide.m

package info (click to toggle)
openems 0.0.35%2Bgit20190103.6a75e98%2Bdfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,424 kB
  • sloc: cpp: 40,407; python: 2,028; yacc: 580; makefile: 458; lex: 350; sh: 176; ruby: 19
file content (105 lines) | stat: -rw-r--r-- 3,411 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
%
% Tutorials / Circ_Waveguide
%
% Describtion at:
% http://openems.de/index.php/Tutorial:_Circular_Waveguide
%
% Tested with
%  - Matlab 2011a / Octave 3.4.3
%  - openEMS v0.0.31
%
% (C) 2010-2013 Thorsten Liebig <thorsten.liebig@gmx.de>

close all
clear
clc

%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
physical_constants;
unit = 1e-3; %drawing unit in mm

% waveguide dimensions
length = 2000;
rad = 350;     %waveguide radius in mm

% frequency range of interest
f_start =  300e6;
f_stop  =  500e6;

mesh_res = [10 2*pi/49.999 10]; %targeted mesh resolution

%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD('EndCriteria',1e-4,'CoordSystem',1);
FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start));

% boundary conditions
BC = [0 0 0 0 3 3]; %pml in pos. and neg. z-direction
FDTD = SetBoundaryCond(FDTD,BC);

%% setup CSXCAD mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX('CoordSystem',1); % init a cylindrical mesh
mesh.r = SmoothMeshLines([0 rad], mesh_res(1)); %mesh in radial direction
mesh.a = SmoothMeshLines([0 2*pi], mesh_res(2)); % mesh in aziumthal dir.
mesh.z = SmoothMeshLines([0 length], mesh_res(3));
CSX = DefineRectGrid(CSX, unit,mesh);

%% apply the waveguide port %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
start=[mesh.r(1)   mesh.a(1)   mesh.z(8)];
stop =[mesh.r(end) mesh.a(end) mesh.z(15)];
[CSX, port{1}] = AddCircWaveGuidePort( CSX, 0, 1, start, stop, rad*unit, 'TE11', 0, 1);

start=[mesh.r(1)   mesh.a(1)   mesh.z(end-13)];
stop =[mesh.r(end) mesh.a(end) mesh.z(end-14)];
[CSX, port{2}] = AddCircWaveGuidePort( CSX, 0, 2, start, stop, rad*unit, 'TE11');

%% define dump box... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et','FileType',1,'SubSampling','4,4,4');
start = [mesh.r(1)   mesh.a(1)   mesh.z(1)];
stop  = [mesh.r(end) mesh.a(end) mesh.z(end)];
CSX = AddBox(CSX,'Et',0 , start,stop);

%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Sim_Path = 'tmp';
Sim_CSX = 'circ_wg.xml';

[status, message, messageid] = rmdir(Sim_Path,'s');
[status, message, messageid] = mkdir(Sim_Path);

WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);

RunOpenEMS(Sim_Path, Sim_CSX)

%% postproc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
freq = linspace(f_start,f_stop,201);
port = calcPort( port, Sim_Path, freq);

s11 = port{1}.uf.ref./ port{1}.uf.inc;
s21 = port{2}.uf.ref./ port{1}.uf.inc;
ZL = port{1}.uf.tot./port{1}.if.tot;


%% plot s-parameter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure
plot(freq*1e-6,20*log10(abs(s11)),'k-','Linewidth',2);
xlim([freq(1) freq(end)]*1e-6);
grid on;
hold on;
plot(freq*1e-6,20*log10(abs(s21)),'r--','Linewidth',2);
l = legend('S_{11}','S_{21}','Location','Best');
set(l,'FontSize',12);
ylabel('S-Parameter (dB)','FontSize',12);
xlabel('frequency (MHz) \rightarrow','FontSize',12);

%% compare analytic and numerical wave-impedance %%%%%%%%%%%%%%%%%%%%%%%%%%
figure
plot(freq*1e-6,real(ZL),'Linewidth',2);
hold on;
grid on;
plot(freq*1e-6,imag(ZL),'r--','Linewidth',2);
plot(freq*1e-6,port{1}.ZL,'g-.','Linewidth',2);
ylabel('ZL (\Omega)','FontSize',12);
xlabel('frequency (MHz) \rightarrow','FontSize',12);
xlim([freq(1) freq(end)]*1e-6);
l = legend('\Re(Z_L)','\Im(Z_L)','Z_L analytic','Location','Best');
set(l,'FontSize',12);