File: Dipole_SAR.m

package info (click to toggle)
openems 0.0.35%2Bgit20190103.6a75e98%2Bdfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,424 kB
  • sloc: cpp: 40,407; python: 2,028; yacc: 580; makefile: 458; lex: 350; sh: 176; ruby: 19
file content (221 lines) | stat: -rw-r--r-- 6,590 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
%
% Tutorials / Dipole SAR + Power budget
%
% Describtion at:
% http://openems.de/index.php/Tutorial:_Dipole_SAR
%
% Tested with
%  - openEMS v0.0.33
%
% (C) 2013-2015 Thorsten Liebig <thorsten.liebig@uni-due.de>

close all
clear
clc

%% switches & options...
postprocessing_only = 0;

%% prepare simulation folder
Sim_Path = 'tmp_Dipole_SAR';
Sim_CSX = 'Dipole_SAR.xml';

%% setup the simulation
physical_constants;
unit = 1e-3; % all lengths in mm

feed.R = 50; % feed resistance

%% define phantom
phantom{1}.name='skin';
phantom{1}.epsR = 50;
phantom{1}.kappa = 0.65; % S/m
phantom{1}.density = 1100; % kg/m^3
phantom{1}.radius = [80 100 100]; % ellipsoide
phantom{1}.center = [100 0 0];

phantom{2}.name='headbone';
phantom{2}.epsR = 13;
phantom{2}.kappa = 0.1; % S/m
phantom{2}.density = 2000; % kg/m^3
phantom{2}.radius = [75 95 95]; % ellipsoide
phantom{2}.center = [100 0 0];

phantom{3}.name='brain';
phantom{3}.epsR = 60;
phantom{3}.kappa = 0.7; % S/m
phantom{3}.density = 1040; % kg/m^3
phantom{3}.radius = [65 85 85]; % ellipsoide
phantom{3}.center = [100 0 0];

%% setup FDTD parameter & excitation function
f0 = 1e9; % center frequency
lambda0 = c0/f0;

f_stop = 1.5e9; % 20 dB corner frequency
lambda_min = c0/f_stop;

mesh_res_air = lambda_min/20/unit;
mesh_res_phantom = 2.5;

dipole_length = 0.46*lambda0/unit;
disp(['Lambda-half dipole length: ' num2str(dipole_length) 'mm'])

%%
FDTD = InitFDTD();
FDTD = SetGaussExcite( FDTD, 0, f_stop );
% apply PML-8 boundary conditions in all directions
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'};
FDTD = SetBoundaryCond( FDTD, BC );

%% setup CSXCAD geometry & mesh
CSX = InitCSX();

%% Dipole
CSX = AddMetal( CSX, 'Dipole' ); % create a perfect electric conductor (PEC)
CSX = AddBox(CSX, 'Dipole', 1, [0 0 -dipole_length/2], [0 0 dipole_length/2]);

% mesh lines for the dipole
mesh.x = 0;
mesh.y = 0;
mesh.z = [-dipole_length/2-[-1/3 2/3]*mesh_res_phantom dipole_length/2+[-1/3 2/3]*mesh_res_phantom];

%% add the dielectrics
for n=1:numel(phantom)
  CSX = AddMaterial( CSX, phantom{n}.name );
  CSX = SetMaterialProperty( CSX, phantom{n}.name, 'Epsilon', phantom{n}.epsR, 'Kappa', phantom{n}.kappa, 'Density', phantom{n}.density);
  CSX = AddSphere( CSX, phantom{n}.name, 10+n, [0 0 0], 1,'Transform',{'Scale',phantom{n}.radius, 'Translate', phantom{n}.center} ); 

  %% mesh lines for the dielectrics
  mesh.x = [mesh.x phantom{n}.radius(1)*[-1 1]+phantom{n}.center(1) ];
  mesh.y = [mesh.y phantom{n}.radius(2)*[-1 1]+phantom{n}.center(2) ];
  mesh.z = [mesh.z phantom{n}.radius(3)*[-1 1]+phantom{n}.center(3) ];
end

%% apply the excitation & resist as a current source
[CSX port] = AddLumpedPort(CSX, 100, 1, feed.R, [-0.1 -0.1 -mesh_res_phantom/2], [0.1 0.1 +mesh_res_phantom/2], [0 0 1], true);

% mesh lines for the port
mesh.z = [mesh.z -mesh_res_phantom/2 +mesh_res_phantom/2];

%% smooth the mesh over the dipole and phantom
mesh = SmoothMesh(mesh, mesh_res_phantom);

%% add lines for the air-box
mesh.x = [mesh.x -200 250+100];
mesh.y = [mesh.y -250 250];
mesh.z = [mesh.z -250 250];

% smooth the final mesh (incl. air box)
mesh = SmoothMesh(mesh, mesh_res_air, 1.2);

%% dump SAR
start = [-10 -100 -100];
stop = [180  100  100];
CSX = AddDump( CSX, 'SAR', 'DumpType', 20, 'Frequency', f0,'FileType',1,'DumpMode',2);
CSX = AddBox( CSX, 'SAR', 0, start, stop);

%% nf2ff calc
start = [mesh.x(1)   mesh.y(1)   mesh.z(1)];
stop  = [mesh.x(end) mesh.y(end) mesh.z(end)];
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, 'OptResolution', lambda_min/15/unit);

%%
% add 10 equidistant cells (air)
% around the structure to keep the pml away from the nf2ff box
mesh = AddPML( mesh, 10 );

% Define the mesh
CSX = DefineRectGrid(CSX, unit, mesh);

%%
if (postprocessing_only==0)
    [status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
    [status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder

    % write openEMS compatible xml-file
    WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );

    % show the structure
    CSXGeomPlot( [Sim_Path '/' Sim_CSX] );

    % run openEMS
    RunOpenEMS( Sim_Path, Sim_CSX );
end


%% postprocessing & make the plots
freq = linspace(500e6, 1500e6, 501 );
port = calcPort(port, Sim_Path, freq);

s11 = port.uf.ref./port.uf.inc;
Zin = port.uf.tot./port.if.tot;

Pin_f0 = interp1(freq, port.P_acc, f0);

%%
% plot feed point impedance
figure
plot( freq/1e6, real(Zin), 'k-', 'Linewidth', 2 );
hold on
grid on
plot( freq/1e6, imag(Zin), 'r--', 'Linewidth', 2 );
title( 'feed point impedance' );
xlabel( 'frequency f / MHz' );
ylabel( 'impedance Z_{in} / Ohm' );
legend( 'real', 'imag' );

% plot reflection coefficient S11
figure
plot( freq/1e9, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
grid on
title( 'reflection coefficient' );
xlabel( 'frequency f / MHz' );
ylabel( 'S_{11} (dB)' );

%% read SAR and visualize
SAR_field = ReadHDF5Dump([Sim_Path '/SAR.h5']);

SAR = SAR_field.FD.values{1};
ptotal = ReadHDF5Attribute([Sim_Path '/SAR.h5'],'/FieldData/FD/f0','power');

%% calculate 3D pattern
phi = 0:3:360;
theta = 0:3:180;

disp( 'calculating 3D far field pattern...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, theta*pi/180, phi*pi/180, 'Outfile','3D_Pattern.h5');

%%
disp(['max SAR: ' num2str(max(SAR(:))/Pin_f0) ' W/kg normalized to 1 W accepted power']);
disp(['accepted power: ' num2str(Pin_f0) ' W (100 %)']);
disp(['radiated power: ' num2str(nf2ff.Prad) ' W ( ' num2str(round(100*(nf2ff.Prad) / Pin_f0)) ' %)']);
disp(['absorbed power: ' num2str(ptotal) ' W ( ' num2str(round(100*(ptotal) / Pin_f0)) ' %)']);
disp(['power budget:   ' num2str(100*(nf2ff.Prad + ptotal) / Pin_f0) ' %']);

%%  plot on a x/y-plane
[SAR_field SAR_mesh] = ReadHDF5Dump([Sim_Path '/SAR.h5'],'Range',{[],[],0});
figure
[X Y] = ndgrid(SAR_mesh.lines{1},SAR_mesh.lines{2});
h = pcolor(X,Y,log10(SAR_field.FD.values{1}/abs(Pin_f0)));
title( 'logarithmic SAR on an xy-plane' );
xlabel('x -->')
ylabel('y -->')
axis equal tight
set(h,'EdgeColor','none');

%%  plot on a x/z-plane
[SAR_field SAR_mesh] = ReadHDF5Dump([Sim_Path '/SAR.h5'],'Range',{[],0,[]});
figure
[X Z] = ndgrid(SAR_mesh.lines{1},SAR_mesh.lines{3});
h = pcolor(X,Z,log10(squeeze(SAR_field.FD.values{1}))/abs(Pin_f0));
title( 'logarithmic SAR on an xz-plane' );
xlabel('x -->')
ylabel('z -->')
axis equal tight
set(h,'EdgeColor','none');

%% dump SAR to vtk file
disp(['Full local/normalized SAR has been dumped to vtk file! Use Paraview to visualize']);
ConvertHDF5_VTK([Sim_Path '/SAR.h5'],[Sim_Path '/SAR'],'weight',1/abs(Pin_f0),'FieldName','SAR_local' );