1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
%
% Tutorials / helical antenna
%
% Describtion at:
% http://openems.de/index.php/Tutorial:_Helical_Antenna
%
% Tested with
% - Matlab 2011a / Octave 4.0
% - openEMS v0.0.33
%
% (C) 2012-2015 Thorsten Liebig <thorsten.liebig@uni-due.de>
close all
clear
clc
post_proc_only = 0;
close all
%% setup the simulation
physical_constants;
unit = 1e-3; % all length in mm
f0 = 2.4e9; % center frequency, frequency of interest!
lambda0 = round(c0/f0/unit); % wavelength in mm
fc = 0.5e9; % 20 dB corner frequency
Helix.radius = 20; % --> diameter is ~ lambda/pi
Helix.turns = 10; % --> expected gain is G ~ 4 * 10 = 40 (16dBi)
Helix.pitch = 30; % --> pitch is ~ lambda/4
Helix.mesh_res = 3;
gnd.radius = lambda0/2;
% feeding
feed.heigth = 3;
feed.R = 120; %feed impedance
% size of the simulation box
SimBox = [1 1 1.5]*2*lambda0;
%% setup FDTD parameter & excitation function
FDTD = InitFDTD( );
FDTD = SetGaussExcite( FDTD, f0, fc );
BC = {'MUR' 'MUR' 'MUR' 'MUR' 'MUR' 'PML_8'}; % boundary conditions
FDTD = SetBoundaryCond( FDTD, BC );
%% setup CSXCAD geometry & mesh
max_res = floor(c0 / (f0+fc) / unit / 20); % cell size: lambda/20
CSX = InitCSX();
% create helix mesh
mesh.x = SmoothMeshLines([-Helix.radius 0 Helix.radius],Helix.mesh_res);
% add the air-box
mesh.x = [mesh.x -SimBox(1)/2-gnd.radius SimBox(1)/2+gnd.radius];
% create a smooth mesh between specified fixed mesh lines
mesh.x = SmoothMeshLines( mesh.x, max_res, 1.4);
% copy x-mesh to y-direction
mesh.y = mesh.x;
% create helix mesh in z-direction
mesh.z = SmoothMeshLines([0 feed.heigth Helix.turns*Helix.pitch+feed.heigth],Helix.mesh_res);
% add the air-box
mesh.z = unique([mesh.z -SimBox(3)/2 max(mesh.z)+SimBox(3)/2 ]);
% create a smooth mesh between specified fixed mesh lines
mesh.z = SmoothMeshLines( mesh.z, max_res, 1.4 );
CSX = DefineRectGrid( CSX, unit, mesh );
%% create helix using the wire primitive
CSX = AddMetal( CSX, 'helix' ); % create a perfect electric conductor (PEC)
ang = linspace(0,2*pi,21);
coil_x = Helix.radius*cos(ang);
coil_y = Helix.radius*sin(ang);
coil_z = ang/2/pi*Helix.pitch;
helix.x=[];
helix.y=[];
helix.z=[];
zpos = feed.heigth;
for n=0:Helix.turns-1
helix.x = [helix.x coil_x];
helix.y = [helix.y coil_y];
helix.z = [helix.z coil_z+zpos];
zpos = zpos + Helix.pitch;
end
clear p
p(1,:) = helix.x;
p(2,:) = helix.y;
p(3,:) = helix.z;
CSX = AddCurve(CSX, 'helix', 0, p);
%% create ground circular ground
CSX = AddMetal( CSX, 'gnd' ); % create a perfect electric conductor (PEC)
% add a box using cylindrical coordinates
start = [0 0 0];
stop = [gnd.radius 2*pi 0];
CSX = AddBox(CSX,'gnd',10,start,stop,'CoordSystem',1);
%% apply the excitation & resist as a current source
start = [Helix.radius 0 0];
stop = [Helix.radius 0 feed.heigth];
[CSX port] = AddLumpedPort(CSX, 5 ,1 ,feed.R, start, stop, [0 0 1], true);
%%nf2ff calc
start = [mesh.x(11) mesh.y(11) mesh.z(11)];
stop = [mesh.x(end-10) mesh.y(end-10) mesh.z(end-10)];
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, 'OptResolution', lambda0/15);
%% prepare simulation folder
Sim_Path = 'tmp_Helical_Ant';
Sim_CSX = 'Helix_Ant.xml';
if (post_proc_only==0)
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
%% write openEMS compatible xml-file
WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
%% show the structure
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
%% run openEMS
RunOpenEMS( Sim_Path, Sim_CSX);
end
%% postprocessing & do the plots
freq = linspace( f0-fc, f0+fc, 501 );
port = calcPort(port, Sim_Path, freq);
Zin = port.uf.tot ./ port.if.tot;
s11 = port.uf.ref ./ port.uf.inc;
% plot feed point impedance
figure
plot( freq/1e6, real(Zin), 'k-', 'Linewidth', 2 );
hold on
grid on
plot( freq/1e6, imag(Zin), 'r--', 'Linewidth', 2 );
title( 'feed point impedance' );
xlabel( 'frequency f / MHz' );
ylabel( 'impedance Z_{in} / Ohm' );
legend( 'real', 'imag' );
% plot reflection coefficient S11
figure
plot( freq/1e6, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
grid on
title( 'reflection coefficient S_{11}' );
xlabel( 'frequency f / MHz' );
ylabel( 'reflection coefficient |S_{11}|' );
drawnow
%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%find resonance frequncy from s11
f_res = f0;
% get accepted antenna power at frequency f0
P_in_0 = interp1(freq, port.P_acc, f0);
% calculate the far field at phi=0 degrees and at phi=90 degrees
thetaRange = unique([0:0.5:90 90:180]);
phiRange = (0:2:360) - 180;
disp( 'calculating the 3D far field...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, thetaRange*pi/180, phiRange*pi/180,'Mode',0,'Outfile','3D_Pattern.h5','Verbose',1);
theta_HPBW = interp1(nf2ff.E_norm{1}(:,1)/max(nf2ff.E_norm{1}(:,1)),thetaRange,1/sqrt(2))*2;
% display power and directivity
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
disp( ['directivity: Dmax = ' num2str(nf2ff.Dmax) ' (' num2str(10*log10(nf2ff.Dmax)) ' dBi)'] );
disp( ['efficiency: nu_rad = ' num2str(100*nf2ff.Prad./P_in_0) ' %']);
disp( ['theta_HPBW = ' num2str(theta_HPBW) ' °']);
%%
directivity = nf2ff.P_rad{1}/nf2ff.Prad*4*pi;
directivity_CPRH = abs(nf2ff.E_cprh{1}).^2./max(nf2ff.E_norm{1}(:)).^2*nf2ff.Dmax;
directivity_CPLH = abs(nf2ff.E_cplh{1}).^2./max(nf2ff.E_norm{1}(:)).^2*nf2ff.Dmax;
%%
figure
plot(thetaRange, 10*log10(directivity(:,1)'),'k-','LineWidth',2);
hold on
grid on
xlabel('theta (deg)');
ylabel('directivity (dBi)');
plot(thetaRange, 10*log10(directivity_CPRH(:,1)'),'g--','LineWidth',2);
plot(thetaRange, 10*log10(directivity_CPLH(:,1)'),'r-.','LineWidth',2);
legend('norm','CPRH','CPLH');
%% dump to vtk
DumpFF2VTK([Sim_Path '/3D_Pattern.vtk'],directivity,thetaRange,phiRange,'scale',1e-3);
DumpFF2VTK([Sim_Path '/3D_Pattern_CPRH.vtk'],directivity_CPRH,thetaRange,phiRange,'scale',1e-3);
DumpFF2VTK([Sim_Path '/3D_Pattern_CPLH.vtk'],directivity_CPLH,thetaRange,phiRange,'scale',1e-3);
|