File: Helical_Antenna.m

package info (click to toggle)
openems 0.0.35%2Bgit20190103.6a75e98%2Bdfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,424 kB
  • sloc: cpp: 40,407; python: 2,028; yacc: 580; makefile: 458; lex: 350; sh: 176; ruby: 19
file content (202 lines) | stat: -rw-r--r-- 6,051 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
%
% Tutorials / helical antenna
%
% Describtion at:
% http://openems.de/index.php/Tutorial:_Helical_Antenna
%
% Tested with
%  - Matlab 2011a / Octave 4.0
%  - openEMS v0.0.33
%
% (C) 2012-2015 Thorsten Liebig <thorsten.liebig@uni-due.de>

close all
clear
clc

post_proc_only = 0;

close all

%% setup the simulation
physical_constants;
unit = 1e-3; % all length in mm

f0 = 2.4e9; % center frequency, frequency of interest!
lambda0 = round(c0/f0/unit); % wavelength in mm
fc = 0.5e9; % 20 dB corner frequency

Helix.radius = 20; % --> diameter is ~ lambda/pi
Helix.turns = 10;  % --> expected gain is G ~ 4 * 10 = 40 (16dBi)
Helix.pitch = 30;  % --> pitch is ~ lambda/4
Helix.mesh_res = 3;

gnd.radius = lambda0/2;

% feeding
feed.heigth = 3;
feed.R = 120;    %feed impedance

% size of the simulation box
SimBox = [1 1 1.5]*2*lambda0;

%% setup FDTD parameter & excitation function
FDTD = InitFDTD( );
FDTD = SetGaussExcite( FDTD, f0, fc );
BC = {'MUR' 'MUR' 'MUR' 'MUR' 'MUR' 'PML_8'}; % boundary conditions
FDTD = SetBoundaryCond( FDTD, BC );

%% setup CSXCAD geometry & mesh
max_res = floor(c0 / (f0+fc) / unit / 20); % cell size: lambda/20
CSX = InitCSX();

% create helix mesh
mesh.x = SmoothMeshLines([-Helix.radius 0 Helix.radius],Helix.mesh_res);
% add the air-box
mesh.x = [mesh.x -SimBox(1)/2-gnd.radius  SimBox(1)/2+gnd.radius];
% create a smooth mesh between specified fixed mesh lines
mesh.x = SmoothMeshLines( mesh.x, max_res, 1.4);

% copy x-mesh to y-direction
mesh.y = mesh.x;

% create helix mesh in z-direction
mesh.z = SmoothMeshLines([0 feed.heigth Helix.turns*Helix.pitch+feed.heigth],Helix.mesh_res);
% add the air-box
mesh.z = unique([mesh.z -SimBox(3)/2 max(mesh.z)+SimBox(3)/2 ]);
% create a smooth mesh between specified fixed mesh lines
mesh.z = SmoothMeshLines( mesh.z, max_res, 1.4 );

CSX = DefineRectGrid( CSX, unit, mesh );

%% create helix using the wire primitive
CSX = AddMetal( CSX, 'helix' ); % create a perfect electric conductor (PEC)

ang = linspace(0,2*pi,21);
coil_x = Helix.radius*cos(ang);
coil_y = Helix.radius*sin(ang);
coil_z = ang/2/pi*Helix.pitch;

helix.x=[];
helix.y=[];
helix.z=[];
zpos = feed.heigth;
for n=0:Helix.turns-1
    helix.x = [helix.x coil_x];
    helix.y = [helix.y coil_y];
    helix.z = [helix.z coil_z+zpos];
    zpos = zpos + Helix.pitch;
end
clear p
p(1,:) = helix.x;
p(2,:) = helix.y;
p(3,:) = helix.z;
CSX = AddCurve(CSX, 'helix', 0, p);

%% create ground circular ground
CSX = AddMetal( CSX, 'gnd' ); % create a perfect electric conductor (PEC)
% add a box using cylindrical coordinates
start = [0          0    0];
stop  = [gnd.radius 2*pi 0];
CSX = AddBox(CSX,'gnd',10,start,stop,'CoordSystem',1);

%% apply the excitation & resist as a current source
start = [Helix.radius 0 0];
stop  = [Helix.radius 0 feed.heigth];
[CSX port] = AddLumpedPort(CSX, 5 ,1 ,feed.R, start, stop, [0 0 1], true);

%%nf2ff calc
start = [mesh.x(11)      mesh.y(11)     mesh.z(11)];
stop  = [mesh.x(end-10) mesh.y(end-10) mesh.z(end-10)];
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, 'OptResolution', lambda0/15);

%% prepare simulation folder
Sim_Path = 'tmp_Helical_Ant';
Sim_CSX = 'Helix_Ant.xml';

if (post_proc_only==0)
    [status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
    [status, message, messageid] = mkdir( Sim_Path );      % create empty simulation folder

    %% write openEMS compatible xml-file
    WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );

    %% show the structure
    CSXGeomPlot( [Sim_Path '/' Sim_CSX] );

    %% run openEMS
    RunOpenEMS( Sim_Path, Sim_CSX);
end

%% postprocessing & do the plots
freq = linspace( f0-fc, f0+fc, 501 );
port = calcPort(port, Sim_Path, freq);

Zin = port.uf.tot ./ port.if.tot;
s11 = port.uf.ref ./ port.uf.inc;

% plot feed point impedance
figure
plot( freq/1e6, real(Zin), 'k-', 'Linewidth', 2 );
hold on
grid on
plot( freq/1e6, imag(Zin), 'r--', 'Linewidth', 2 );
title( 'feed point impedance' );
xlabel( 'frequency f / MHz' );
ylabel( 'impedance Z_{in} / Ohm' );
legend( 'real', 'imag' );

% plot reflection coefficient S11
figure
plot( freq/1e6, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
grid on
title( 'reflection coefficient S_{11}' );
xlabel( 'frequency f / MHz' );
ylabel( 'reflection coefficient |S_{11}|' );

drawnow

%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%find resonance frequncy from s11
f_res = f0;

% get accepted antenna power at frequency f0
P_in_0 = interp1(freq, port.P_acc, f0);

% calculate the far field at phi=0 degrees and at phi=90 degrees
thetaRange = unique([0:0.5:90 90:180]);
phiRange = (0:2:360) - 180;
disp( 'calculating the 3D far field...' );

nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, thetaRange*pi/180, phiRange*pi/180,'Mode',0,'Outfile','3D_Pattern.h5','Verbose',1);

theta_HPBW = interp1(nf2ff.E_norm{1}(:,1)/max(nf2ff.E_norm{1}(:,1)),thetaRange,1/sqrt(2))*2;

% display power and directivity
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
disp( ['directivity: Dmax = ' num2str(nf2ff.Dmax) ' (' num2str(10*log10(nf2ff.Dmax)) ' dBi)'] );
disp( ['efficiency: nu_rad = ' num2str(100*nf2ff.Prad./P_in_0) ' %']);
disp( ['theta_HPBW = ' num2str(theta_HPBW) ' °']);


%%
directivity = nf2ff.P_rad{1}/nf2ff.Prad*4*pi;
directivity_CPRH = abs(nf2ff.E_cprh{1}).^2./max(nf2ff.E_norm{1}(:)).^2*nf2ff.Dmax;
directivity_CPLH = abs(nf2ff.E_cplh{1}).^2./max(nf2ff.E_norm{1}(:)).^2*nf2ff.Dmax;

%%
figure
plot(thetaRange, 10*log10(directivity(:,1)'),'k-','LineWidth',2);
hold on
grid on
xlabel('theta (deg)');
ylabel('directivity (dBi)');
plot(thetaRange, 10*log10(directivity_CPRH(:,1)'),'g--','LineWidth',2);
plot(thetaRange, 10*log10(directivity_CPLH(:,1)'),'r-.','LineWidth',2);
legend('norm','CPRH','CPLH');

%% dump to vtk
DumpFF2VTK([Sim_Path '/3D_Pattern.vtk'],directivity,thetaRange,phiRange,'scale',1e-3);
DumpFF2VTK([Sim_Path '/3D_Pattern_CPRH.vtk'],directivity_CPRH,thetaRange,phiRange,'scale',1e-3);
DumpFF2VTK([Sim_Path '/3D_Pattern_CPLH.vtk'],directivity_CPLH,thetaRange,phiRange,'scale',1e-3);