File: Horn_Antenna.m

package info (click to toggle)
openems 0.0.35%2Bgit20190103.6a75e98%2Bdfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,424 kB
  • sloc: cpp: 40,407; python: 2,028; yacc: 580; makefile: 458; lex: 350; sh: 176; ruby: 19
file content (202 lines) | stat: -rw-r--r-- 6,506 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
%
% Tutorials / horn antenna
%
% Describtion at:
% http://openems.de/index.php/Tutorial:_Horn_Antenna
%
% Tested with
%  - Matlab 2011a / Octave 3.6.4
%  - openEMS v0.0.31
%
% (C) 2011,2012,2013 Thorsten Liebig <thorsten.liebig@uni-due.de>

close all
clear
clc

%% setup the simulation
physical_constants;
unit = 1e-3; % all length in mm

% horn width in x-direction
horn.width  = 20;
% horn height in y-direction
horn.height = 30;
% horn length in z-direction
horn.length = 50;

horn.feed_length = 50;

horn.thickness = 2;

% horn opening angle in x, y
horn.angle = [20 20]*pi/180;

% size of the simulation box
SimBox = [200 200 200];

% frequency range of interest
f_start =  10e9;
f_stop  =  20e9;

% frequency of interest
f0 = 15e9;

%waveguide TE-mode definition
TE_mode = 'TE10';
a = horn.width;
b = horn.height;

%% setup FDTD parameter & excitation function
FDTD = InitFDTD('EndCriteria', 1e-4);
FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start));
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; % boundary conditions
FDTD = SetBoundaryCond( FDTD, BC );

%% setup CSXCAD geometry & mesh
% currently, openEMS cannot automatically generate a mesh
max_res = c0 / (f_stop) / unit / 15; % cell size: lambda/20
CSX = InitCSX();

%create fixed lines for the simulation box, substrate and port
mesh.x = [-SimBox(1)/2 -a/2 a/2 SimBox(1)/2];
mesh.x = SmoothMeshLines( mesh.x, max_res, 1.4); % create a smooth mesh between specified fixed mesh lines

mesh.y = [-SimBox(2)/2 -b/2 b/2 SimBox(2)/2];
mesh.y = SmoothMeshLines( mesh.y, max_res, 1.4 );

%create fixed lines for the simulation box and given number of lines inside the substrate
mesh.z = [-horn.feed_length 0 SimBox(3)-horn.feed_length ];
mesh.z = SmoothMeshLines( mesh.z, max_res, 1.4 );

CSX = DefineRectGrid( CSX, unit, mesh );

%% create horn
% horn feed rect waveguide
CSX = AddMetal(CSX, 'horn');
start = [-a/2-horn.thickness -b/2 mesh.z(1)];
stop  = [-a/2                 b/2 0];
CSX = AddBox(CSX,'horn',10,start,stop);
start = [a/2+horn.thickness -b/2 mesh.z(1)];
stop  = [a/2                 b/2 0];
CSX = AddBox(CSX,'horn',10,start,stop);
start = [-a/2-horn.thickness b/2+horn.thickness mesh.z(1)];
stop  = [ a/2+horn.thickness b/2                0];
CSX = AddBox(CSX,'horn',10,start,stop);
start = [-a/2-horn.thickness -b/2-horn.thickness mesh.z(1)];
stop  = [ a/2+horn.thickness -b/2                0];
CSX = AddBox(CSX,'horn',10,start,stop);

% horn opening
p(2,1) = a/2;
p(1,1) = 0;
p(2,2) = a/2 + sin(horn.angle(1))*horn.length;
p(1,2) = horn.length;
p(2,3) = -a/2 - sin(horn.angle(1))*horn.length;
p(1,3) = horn.length;
p(2,4) = -a/2;
p(1,4) = 0;
CSX = AddLinPoly( CSX, 'horn', 10, 1, -horn.thickness/2, p, horn.thickness, 'Transform', {'Rotate_X',horn.angle(2),'Translate',['0,' num2str(-b/2-horn.thickness/2) ',0']});
CSX = AddLinPoly( CSX, 'horn', 10, 1, -horn.thickness/2, p, horn.thickness, 'Transform', {'Rotate_X',-horn.angle(2),'Translate',['0,' num2str(b/2+horn.thickness/2) ',0']});

p(1,1) = b/2+horn.thickness;
p(2,1) = 0;
p(1,2) = b/2+horn.thickness + sin(horn.angle(2))*horn.length;
p(2,2) = horn.length;
p(1,3) = -b/2-horn.thickness - sin(horn.angle(2))*horn.length;
p(2,3) = horn.length;
p(1,4) = -b/2-horn.thickness;
p(2,4) = 0;
CSX = AddLinPoly( CSX, 'horn', 10, 0, -horn.thickness/2, p, horn.thickness, 'Transform', {'Rotate_Y',-horn.angle(2),'Translate',[ num2str(-a/2-horn.thickness/2) ',0,0']});
CSX = AddLinPoly( CSX, 'horn', 10, 0, -horn.thickness/2, p, horn.thickness, 'Transform', {'Rotate_Y',+horn.angle(2),'Translate',[ num2str(a/2+horn.thickness/2) ',0,0']});

% horn aperture
A = (a + 2*sin(horn.angle(1))*horn.length)*unit * (b + 2*sin(horn.angle(2))*horn.length)*unit;

%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
start=[-a/2 -b/2 mesh.z(8) ];
stop =[ a/2  b/2 mesh.z(1)+horn.feed_length/2 ];
[CSX, port] = AddRectWaveGuidePort( CSX, 0, 1, start, stop, 2, a*unit, b*unit, TE_mode, 1);

%% nf2ff calc
start = [mesh.x(9) mesh.y(9) mesh.z(9)];
stop  = [mesh.x(end-8) mesh.y(end-8) mesh.z(end-8)];
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, 'Directions', [1 1 1 1 0 1]);

%% prepare simulation folder
Sim_Path = 'tmp_Horn_Antenna';
Sim_CSX = 'horn_ant.xml';

[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder

%% write openEMS compatible xml-file
WriteOpenEMS([Sim_Path '/' Sim_CSX], FDTD, CSX);

%% show the structure
CSXGeomPlot([Sim_Path '/' Sim_CSX]);

%% run openEMS
RunOpenEMS(Sim_Path, Sim_CSX);

%% postprocessing & do the plots
freq = linspace(f_start,f_stop,201);

port = calcPort(port, Sim_Path, freq);

Zin = port.uf.tot ./ port.if.tot;
s11 = port.uf.ref ./ port.uf.inc;

plot( freq/1e9, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
ylim([-60 0]);
grid on
title( 'reflection coefficient S_{11}' );
xlabel( 'frequency f / GHz' );
ylabel( 'reflection coefficient |S_{11}|' );

drawnow

%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% calculate the far field at phi=0 degrees and at phi=90 degrees
thetaRange = (0:2:359) - 180;
disp( 'calculating far field at phi=[0 90] deg...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, [0 90]*pi/180);

Dlog=10*log10(nf2ff.Dmax);
G_a = 4*pi*A/(c0/f0)^2;
e_a = nf2ff.Dmax/G_a;

% display some antenna parameter
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
disp( ['directivity: Dmax = ' num2str(Dlog) ' dBi'] );
disp( ['aperture efficiency: e_a = ' num2str(e_a*100) '%'] );

%%
% normalized directivity
figure
plotFFdB(nf2ff,'xaxis','theta','param',[1 2]);
drawnow
%   D_log = 20*log10(nf2ff.E_norm{1}/max(max(nf2ff.E_norm{1})));
%   D_log = D_log + 10*log10(nf2ff.Dmax);
%   plot( nf2ff.theta, D_log(:,1) ,'k-', nf2ff.theta, D_log(:,2) ,'r-' );

% polar plot
figure
polarFF(nf2ff,'xaxis','theta','param',[1 2],'logscale',[-40 20], 'xtics', 12);
drawnow
%   polar( nf2ff.theta, nf2ff.E_norm{1}(:,1) )

%% calculate 3D pattern
phiRange = sort( unique( [-180:5:-100 -100:2.5:-50 -50:1:50 50:2.5:100 100:5:180] ) );
thetaRange = sort( unique([ 0:1:50 50:2.:100 100:5:180 ]));

disp( 'calculating 3D far field...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, phiRange*pi/180, 'Verbose',2,'Outfile','nf2ff_3D.h5');

figure
plotFF3D(nf2ff);

%%
E_far_normalized = nf2ff.E_norm{1}/max(nf2ff.E_norm{1}(:));
DumpFF2VTK([Sim_Path '/Horn_Pattern.vtk'],E_far_normalized,thetaRange,phiRange,'scale',1e-3);