1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
%
% Tutorials / 3T MRI Low Pass Birdcage coil
%
% Describtion at:
% http://openems.de/index.php/Tutorial:_MRI_LP_Birdcage
%
% Estimated time to run: ~7h @ ~65MC/s
% Memory requirement (RAM): ~ 700MB
%
% Tested with
% - openEMS v0.0.33
% - Matlab 7.12.0 (R2011a)
%
% (C) 2013-2015 Thorsten Liebig <thorsten.liebig@gmx.de>
close all
clear
clc
% simulation setup
f0 = 128e6;
excite.f_0 = 75e6; % excite gaussian pulse center frequency
excite.f_c = 75e6; % excite gaussian pulse cutoff frequency
postproc_only = 0; % set to 1 to perform only post processing
GeomPlot = 1; % set to 0 to skip geometry viewer
% bore setup
Bore.rad = 320;
Bore.length = 1600;
% birdcage setup
BC.N_rungs = 8;
BC.rad = 120;
BC.stripwidth = 10;
BC.portwidth = BC.stripwidth/2;
BC.portlength = BC.stripwidth/2;
BC.length = 250;
BC.cap = 2.6e-12;
% feed amplitude and phase at given rungs
BC.feed_pos = [1 3];
BC.feed_amp = [1 -1j];
%% define the human body model (virtual family)
% set file name for human body model to create with "Convert_VF_DiscMaterial"
% the file name should contain a full path
body_model_file = [pwd '/Ella_centered_' num2str(f0/1e6) 'MHz.h5'];
% convert only part of the model (head/shoulder section)
body_model_range = {[],[],[-0.85 0]};
body_mesh_res = 2.5; % should be something like: BC.stripwidth/4
% paths to virtual family voxel models (VFVM), adept to your install!
VF_raw_filesuffix = '/tmp/Ella_26y_V2_1mm';
VF_mat_db_file = '/tmp/DB_h5_20120711_SEMCADv14.8.h5';
% delete(body_model_file); % uncomment to delete old model if something changed
% convert model (if it does not exist)
Convert_VF_DiscMaterial(VF_raw_filesuffix, VF_mat_db_file, body_model_file, ...
'Frequency', f0, 'Center', 1, ...
'Range', body_model_range);
% rotate model to face the nose in +y-dir, and translate
body_model_transform = {'Rotate_X',pi,'Rotate_Z',pi, ...
'Translate',[0,5,-720]};
%% some internal parameter
physical_constants % load important physical constans
end_crit = 1e-5; %abort simulation at -50dB energy drop
unit = 1e-3; %drawing unit used
%capacity footprint is 4mm x 4mm
lambda_min = c0/(excite.f_0+excite.f_c);
% meshing options
% desired mesh resolution
mesh_res([1 3]) = min(15,lambda_min/20/unit);
mesh_res(2) = body_mesh_res / BC.rad;
%% setup FDTD parameter & excitation function
FDTD = InitFDTD('CoordSystem', 1, ... %init a cylindrical FDTD setup
'EndCriteria', 1e-4, ... % with an end criteria of -40dB (1e-4)
'MultiGrid', '10,20',... % add two cylindrical sub-grids at a radius of 10 and 20 mm
'CellConstantMaterial', 1); % assume a material is constant inside
% a cell (material probing in cell center)
% define the excitation time-signal (unmodulated gaussian pulse)
FDTD = SetGaussExcite(FDTD,excite.f_0,excite.f_c);
% define & set boundary conditions
% - pml in +/- z-direction
% - boundaries in -r and +/- alpha direction disabled (full cylindrical mesh)
% - PEC boundary in +r-direction to model bore RF shield
FDTD = SetBoundaryCond(FDTD, [0 0 0 0 3 3]);
%% setup CSXCAD geometry & mesh (cylindrical)
CSX = InitCSX('CoordSystem',1);
% init empty mesh structure
mesh.r = [];
mesh.a = [];
mesh.z = [];
%% Create metal bird cage and rung capacities
CSX = AddMetal(CSX,'metal');
CSX = AddLumpedElement(CSX,'caps','z','C',BC.cap);
da_Strip = BC.stripwidth/BC.rad; % width of a strip in radiant
da_Caps = BC.portwidth/BC.rad; % width of a cap/port in radiant
da_Segs = 2*pi/BC.N_rungs; % width of a rung in radiant
a_start = -pi-da_Segs/2; % starting angle
w0 = 2*pi*f0;
T0 = 1/f0;
% port counter
port_Nr = 1;
a0 = a_start;
for n=1:BC.N_rungs
start = [BC.rad a0+da_Segs/2-da_Caps/2 -0.5*BC.portlength];
stop = [BC.rad a0+da_Segs/2+da_Caps/2 +0.5*BC.portlength];
CSX = AddBox(CSX,'caps',1, start, stop);
start = [BC.rad a0+da_Segs/2-da_Caps/2 0.5*BC.length-BC.stripwidth/2-BC.portlength];
stop = [BC.rad a0+da_Segs/2+da_Caps/2 0.5*BC.length-BC.stripwidth/2];
if (~isempty(intersect(n, BC.feed_pos)) && (BC.feed_amp(port_Nr)~=0)) % active port
exc_amp = abs(BC.feed_amp(port_Nr));
% calculate time delay to achieve a given phase shift at f0
T = -angle(BC.feed_amp(port_Nr)) / w0;
if T<0
T = T + T0;
end
[CSX port{port_Nr}] = AddLumpedPort(CSX, 100, port_Nr, 50, start, stop, [0 0 1]*exc_amp, true,'Delay',T);
%increase port count
port_Nr = port_Nr+1;
start = [BC.rad a0+da_Segs/2-da_Strip/2 0.5*BC.length-BC.stripwidth/2-BC.portlength];
elseif ~isempty(intersect(n, BC.feed_pos)) % passive port
[CSX port{port_Nr}] = AddLumpedPort(CSX, 100, port_Nr, 50, start, stop, [0 0 1], false);
%increase port count
port_Nr = port_Nr+1;
start = [BC.rad a0+da_Segs/2-da_Strip/2 0.5*BC.length-BC.stripwidth/2-BC.portlength];
else
start = [BC.rad a0+da_Segs/2-da_Strip/2 0.5*BC.length];
end
% the start z-coordinate depends on the port (see above)
stop = [BC.rad a0+da_Segs/2+da_Strip/2 0.5*BC.portlength];
CSX = AddBox(CSX,'metal',1, start, stop);
start = [BC.rad a0+da_Segs/2-da_Strip/2 -0.5*BC.length];
stop = [BC.rad a0+da_Segs/2+da_Strip/2 -0.5*BC.portlength];
CSX = AddBox(CSX,'metal',1, start, stop);
% some additonal mesh lines
mesh.a = [mesh.a a0+da_Segs/2];
a0 = a0 + da_Segs;
end
% create metal top ring
start = [BC.rad a_start -(BC.length-BC.stripwidth)/2];
stop = [BC.rad a_start+2*pi -(BC.length+BC.stripwidth)/2];
CSX = AddBox(CSX,'metal',1, start, stop);
% create metal bottom ring
start = [BC.rad a_start (BC.length-BC.stripwidth)/2];
stop = [BC.rad a_start+2*pi (BC.length+BC.stripwidth)/2];
CSX = AddBox(CSX,'metal',1, start, stop);
%% create smooth mesh
mesh = DetectEdges(CSX, mesh);
mesh.r = [0 SmoothMeshLines([body_mesh_res*1.5 mesh.r], body_mesh_res)];
mesh.z = SmoothMeshLines(mesh.z, body_mesh_res);
mesh.r = [mesh.r Bore.rad]; %mesh lines in radial direction
mesh.z = [-Bore.length/2 mesh.z Bore.length/2]; %mesh lines in z-direction
mesh = SmoothMesh(mesh, mesh_res, 1.5);
%% check the cell limit
numCells = numel(mesh.r)*numel(mesh.a)*numel(mesh.z);
%% define human body model
CSX = AddDiscMaterial(CSX, 'body_model', 'File', body_model_file, 'Scale', 1/unit, 'Transform', body_model_transform);
start = [mesh.r(1) mesh.a(1) mesh.z(1)];
stop = [mesh.r(end) mesh.a(end) mesh.z(end)];
CSX = AddBox(CSX, 'body_model', 0, start, stop);
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
start = [0 mesh.a(1) -BC.length/2];
stop = [BC.rad mesh.a(end) +BC.length/2];
CSX = AddDump(CSX,'Ef','FileType',1,'DumpType',10,'DumpMode',2,'Frequency',f0);
CSX = AddBox(CSX,'Ef',0 , start,stop);
CSX = AddDump(CSX,'Hf','FileType',1,'DumpType',11,'DumpMode',2,'Frequency',f0);
CSX = AddBox(CSX,'Hf',0 , start,stop);
CSX = AddDump(CSX,'SAR','FileType',1,'DumpType',20,'DumpMode',2,'Frequency',f0);
CSX = AddBox(CSX,'SAR',0 , start,stop);
start = [0 mesh.a(1) 0];
stop = [BC.rad mesh.a(end) 0];
CSX = AddDump(CSX,'Ht','FileType',1,'DumpType',1,'DumpMode',2);
CSX = AddBox(CSX,'Ht',0 , start,stop);
%% finalize mesh
% add some lines for the pml in +/- z- direction
mesh = AddPML(mesh, [0 0 0 0 10 10], 1);
% define the mesh
CSX = DefineRectGrid(CSX, unit, mesh);
%% Write file & run openEMS
Sim_Path = ['tmp_' mfilename];
if (postproc_only==0)
[status, message, messageid] = rmdir(Sim_Path,'s'); %delete old results
[status, message, messageid] = mkdir(Sim_Path); %create folder
WriteOpenEMS([Sim_Path '/BirdCage.xml'],FDTD,CSX);
end
if (GeomPlot==1)
CSXGeomPlot( [Sim_Path '/BirdCage.xml'] , ['--export-polydata-vtk=' Sim_Path ' --RenderDiscMaterial -v']);
end
if (postproc_only==0)
RunOpenEMS(Sim_Path, 'BirdCage.xml');
end
%%
freq = linspace(excite.f_0-excite.f_c,excite.f_0+excite.f_c,201);
port = calcPort(port, Sim_Path, freq);
close all
s11 = port{1}.uf.ref./port{1}.uf.inc;
s22 = port{2}.uf.ref./port{2}.uf.inc;
% the s-parameter may be larger than 1 (0dB) since all ports are excited
% and do not have a perfect port isolation
plot(freq*1e-6,20*log10(abs(s11)),'Linewidth',2)
hold on
grid on
plot(freq*1e-6,20*log10(abs(s22)),'r--','Linewidth',2)
legend('s11','s22');
%% read SAR values on a xy-plane (range)
[SAR SAR_mesh] = ReadHDF5Dump([Sim_Path '/SAR.h5'],'Range',{[],[],0},'CloseAlpha',1);
SAR = SAR.FD.values{1};
% SAR plot
figure()
[R A] = ndgrid(SAR_mesh.lines{1},SAR_mesh.lines{2});
X = R.*cos(A);Y = R.*sin(A);
colormap('hot');
h = pcolor(X,Y,(squeeze(SAR)));
% h = pcolor(X,Y,log10(squeeze(SAR)));
set(h,'EdgeColor','none');
xlabel('x -->');
ylabel('y -->');
title('local SAR');
axis equal tight
%% plot B1+/- on an xy-plane
[H_field H_mesh] = ReadHDF5Dump([Sim_Path '/Hf.h5'],'Range',{[0 0.1],[],0},'CloseAlpha',1);
% create a 2D grid to plot on
[R A] = ndgrid(H_mesh.lines{1},H_mesh.lines{2});
X = R.*cos(A);
Y = R.*sin(A);
% calc Bx,By (from Br and Ba), B1p, B1m
Bx = MUE0*(H_field.FD.values{1}(:,:,:,1).*cos(A) - H_field.FD.values{1}(:,:,:,2).*sin(A));
By = MUE0*(H_field.FD.values{1}(:,:,:,1).*sin(A) + H_field.FD.values{1}(:,:,:,2).*cos(A));
B1p = 0.5*(Bx+1j*By);
B1m = 0.5*(Bx-1j*By);
Dump2VTK([Sim_Path '/B1p_xy.vtk'], abs(B1p), H_mesh, 'B-Field');
Dump2VTK([Sim_Path '/B1m_xy.vtk'], abs(B1m), H_mesh, 'B-Field');
maxB1 = max([abs(B1p(:)); abs(B1m(:))]);
% B1+ plot
figure()
subplot(1,2,1);
h = pcolor(X,Y,abs(B1p));
set(h,'EdgeColor','none');
xlabel('x -->');
ylabel('y -->');
title('B_1^+ field (dB)');
caxis([0 maxB1]);
axis equal tight
% B1- plot
subplot(1,2,2);
h = pcolor(X,Y,abs(B1m));
set(h,'EdgeColor','none');
xlabel('x -->');
ylabel('y -->');
title('B_1^- field (dB)');
caxis([0 maxB1]);
axis equal tight
%%
ConvertHDF5_VTK([Sim_Path '/Hf.h5'],[Sim_Path '/Hf_xy'],'Range',{[],[],0},'CloseAlpha',1)
ConvertHDF5_VTK([Sim_Path '/SAR.h5'],[Sim_Path '/SAR_xy'],'Range',{[],[],0},'CloseAlpha',1)
|