1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
%
% EXAMPLE / antennas / patch antenna
%
% This example demonstrates how to:
% - calculate the reflection coefficient of a patch antenna
%
%
% Tested with
% - Matlab 2009b
% - Octave 3.3.52
% - openEMS v0.0.23
%
% (C) 2010,2011 Thorsten Liebig <thorsten.liebig@uni-due.de>
close all
clear
clc
%% switches & options...
postprocessing_only = 0;
draw_3d_pattern = 0; % this may take a while...
use_pml = 0; % use pml boundaries instead of mur
openEMS_opts = '';
%% setup the simulation
physical_constants;
unit = 1e-3; % all length in mm
% width in x-direction
% length in y-direction
% main radiation in z-direction
patch.width = 32.86; % resonant length
patch.length = 41.37;
substrate.epsR = 3.38;
substrate.kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate.epsR;
substrate.width = 60;
substrate.length = 60;
substrate.thickness = 1.524;
substrate.cells = 4;
feed.pos = -5.5;
feed.width = 2;
feed.R = 50; % feed resistance
% size of the simulation box
SimBox = [100 100 25];
%% prepare simulation folder
Sim_Path = 'tmp';
Sim_CSX = 'patch_ant.xml';
if (postprocessing_only==0)
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
end
%% setup FDTD parameter & excitation function
max_timesteps = 30000;
min_decrement = 1e-5; % equivalent to -50 dB
f0 = 0e9; % center frequency
fc = 3e9; % 20 dB corner frequency (in this case 0 Hz - 3e9 Hz)
FDTD = InitFDTD( 'NrTS', max_timesteps, 'EndCriteria', min_decrement );
FDTD = SetGaussExcite( FDTD, f0, fc );
BC = {'MUR' 'MUR' 'MUR' 'MUR' 'MUR' 'MUR'}; % boundary conditions
if (use_pml>0)
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; % use pml instead of mur
end
FDTD = SetBoundaryCond( FDTD, BC );
%% setup CSXCAD geometry & mesh
% currently, openEMS cannot automatically generate a mesh
max_res = c0 / (f0+fc) / unit / 20; % cell size: lambda/20
CSX = InitCSX();
mesh.x = [-SimBox(1)/2 SimBox(1)/2 -substrate.width/2 substrate.width/2 feed.pos];
% add patch mesh with 2/3 - 1/3 rule
mesh.x = [mesh.x -patch.width/2-max_res/2*0.66 -patch.width/2+max_res/2*0.33 patch.width/2+max_res/2*0.66 patch.width/2-max_res/2*0.33];
mesh.x = SmoothMeshLines( mesh.x, max_res, 1.4); % create a smooth mesh between specified mesh lines
mesh.y = [-SimBox(2)/2 SimBox(2)/2 -substrate.length/2 substrate.length/2 -feed.width/2 feed.width/2];
% add patch mesh with 2/3 - 1/3 rule
mesh.y = [mesh.y -patch.length/2-max_res/2*0.66 -patch.length/2+max_res/2*0.33 patch.length/2+max_res/2*0.66 patch.length/2-max_res/2*0.33];
mesh.y = SmoothMeshLines( mesh.y, max_res, 1.4 );
mesh.z = [-SimBox(3)/2 linspace(0,substrate.thickness,substrate.cells) SimBox(3) ];
mesh.z = SmoothMeshLines( mesh.z, max_res, 1.4 );
mesh = AddPML( mesh, [8 8 8 8 8 8] ); % add equidistant cells (air around the structure)
CSX = DefineRectGrid( CSX, unit, mesh );
%% create patch
CSX = AddMetal( CSX, 'patch' ); % create a perfect electric conductor (PEC)
start = [-patch.width/2 -patch.length/2 substrate.thickness];
stop = [ patch.width/2 patch.length/2 substrate.thickness];
CSX = AddBox(CSX,'patch',10,start,stop);
%% create substrate
CSX = AddMaterial( CSX, 'substrate' );
CSX = SetMaterialProperty( CSX, 'substrate', 'Epsilon', substrate.epsR, 'Kappa', substrate.kappa );
start = [-substrate.width/2 -substrate.length/2 0];
stop = [ substrate.width/2 substrate.length/2 substrate.thickness];
CSX = AddBox( CSX, 'substrate', 0, start, stop );
%% create ground (same size as substrate)
CSX = AddMetal( CSX, 'gnd' ); % create a perfect electric conductor (PEC)
start(3)=0;
stop(3) =0;
CSX = AddBox(CSX,'gnd',10,start,stop);
%% apply the excitation & resist as a current source
start = [feed.pos-.1 -feed.width/2 0];
stop = [feed.pos+.1 +feed.width/2 substrate.thickness];
[CSX] = AddLumpedPort(CSX, 5 ,1 ,feed.R, start, stop, [0 0 1], true);
%% dump magnetic field over the patch antenna
CSX = AddDump( CSX, 'Ht_', 'DumpType', 1, 'DumpMode', 2); % cell interpolated
start = [-patch.width -patch.length substrate.thickness+1];
stop = [ patch.width patch.length substrate.thickness+1];
CSX = AddBox( CSX, 'Ht_', 0, start, stop );
%%nf2ff calc
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', -SimBox/2, SimBox/2);
if (postprocessing_only==0)
%% write openEMS compatible xml-file
WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
%% show the structure
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
%% run openEMS
RunOpenEMS( Sim_Path, Sim_CSX, openEMS_opts );
end
%% postprocessing & do the plots
freq = linspace( max([1e9,f0-fc]), f0+fc, 501 );
U = ReadUI( {'port_ut1','et'}, 'tmp/', freq ); % time domain/freq domain voltage
I = ReadUI( 'port_it1', 'tmp/', freq ); % time domain/freq domain current (half time step is corrected)
% plot time domain voltage
figure
[ax,h1,h2] = plotyy( U.TD{1}.t/1e-9, U.TD{1}.val, U.TD{2}.t/1e-9, U.TD{2}.val );
set( h1, 'Linewidth', 2 );
set( h1, 'Color', [1 0 0] );
set( h2, 'Linewidth', 2 );
set( h2, 'Color', [0 0 0] );
grid on
title( 'time domain voltage' );
xlabel( 'time t / ns' );
ylabel( ax(1), 'voltage ut1 / V' );
ylabel( ax(2), 'voltage et / V' );
% now make the y-axis symmetric to y=0 (align zeros of y1 and y2)
y1 = ylim(ax(1));
y2 = ylim(ax(2));
ylim( ax(1), [-max(abs(y1)) max(abs(y1))] );
ylim( ax(2), [-max(abs(y2)) max(abs(y2))] );
% plot feed point impedance
figure
Zin = U.FD{1}.val ./ I.FD{1}.val;
plot( freq/1e6, real(Zin), 'k-', 'Linewidth', 2 );
hold on
grid on
plot( freq/1e6, imag(Zin), 'r--', 'Linewidth', 2 );
title( 'feed point impedance' );
xlabel( 'frequency f / MHz' );
ylabel( 'impedance Z_{in} / Ohm' );
legend( 'real', 'imag' );
% plot reflection coefficient S11
figure
uf_inc = 0.5*(U.FD{1}.val + I.FD{1}.val * 50);
if_inc = 0.5*(I.FD{1}.val - U.FD{1}.val / 50);
uf_ref = U.FD{1}.val - uf_inc;
if_ref = I.FD{1}.val - if_inc;
s11 = uf_ref ./ uf_inc;
plot( freq/1e6, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
grid on
title( 'reflection coefficient S_{11}' );
xlabel( 'frequency f / MHz' );
ylabel( 'reflection coefficient |S_{11}|' );
P_in = 0.5*U.FD{1}.val .* conj( I.FD{1}.val );
%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f_res_ind = find(s11==min(s11));
f_res = freq(f_res_ind);
% calculate the far field at phi=0 degrees and at phi=90 degrees
thetaRange = (0:2:359) - 180;
phiRange = [0 90];
disp( 'calculating far field at phi=[0 90] deg...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, thetaRange*pi/180, phiRange*pi/180);
Dlog=10*log10(nf2ff.Dmax);
% display power and directivity
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
disp( ['directivity: Dmax = ' num2str(Dlog) ' dBi'] );
disp( ['efficiency: nu_rad = ' num2str(100*nf2ff.Prad./real(P_in(f_res_ind))) ' %']);
% display phi
figure
plotFFdB(nf2ff,'xaxis','theta','param',[1 2]);
drawnow
if (draw_3d_pattern==0)
return
end
%% calculate 3D pattern
phiRange = 0:2:360;
thetaRange = 0:2:180;
disp( 'calculating 3D far field...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, thetaRange*pi/180, phiRange*pi/180, 'Verbose',2,'Outfile','nf2ff_3D.h5');
figure
plotFF3D(nf2ff);
%% visualize magnetic fields
% you will find vtk dump files in the simulation folder (tmp/)
% use paraview to visulaize them
|