1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
%
% EXAMPLE / antennas / patch antenna array
%
% This example demonstrates how to:
% - calculate the reflection coefficient of a patch antenna array
%
%
% Tested with
% - Matlab 2009b
% - Octave 3.3.52
% - openEMS v0.0.23
%
% (C) 2010 Thorsten Liebig <thorsten.liebig@uni-due.de>
close all
clear
clc
%% switches & options...
postprocessing_only = 0;
draw_3d_pattern = 0; % this may take a (very long) while...
use_pml = 0; % use pml boundaries instead of mur
openEMS_opts = '';
%% setup the simulation
physical_constants;
unit = 1e-3; % all length in mm
% width in x-direction
% length in y-direction
% main radiation in z-direction
patch.width = 32.86; % resonant length
patch.length = 41.37;
% define array size and dimensions
array.xn = 4;
array.yn = 4;
array.x_spacing = patch.width * 3;
array.y_spacing = patch.length * 3;
substrate.epsR = 3.38;
substrate.kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate.epsR;
substrate.width = 60 + (array.xn-1) * array.x_spacing;
substrate.length = 60 + (array.yn-1) * array.y_spacing;
substrate.thickness = 1.524;
substrate.cells = 4;
feed.pos = -5.5;
feed.width = 2;
feed.R = 50; % feed resistance
% size of the simulation box around the array
SimBox = [50+substrate.width 50+substrate.length 25];
%% prepare simulation folder
Sim_Path = 'tmp';
Sim_CSX = 'patch_array.xml';
if (postprocessing_only==0)
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
end
%% setup FDTD parameter & excitation function
max_timesteps = 30000;
min_decrement = 1e-5; % equivalent to -50 dB
f0 = 0e9; % center frequency
fc = 3e9; % 10 dB corner frequency (in this case 0 Hz - 3e9 Hz)
FDTD = InitFDTD( 'NrTS', max_timesteps, 'EndCriteria', min_decrement );
FDTD = SetGaussExcite( FDTD, f0, fc );
BC = {'MUR' 'MUR' 'MUR' 'MUR' 'MUR' 'MUR'}; % boundary conditions
if (use_pml>0)
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; % use pml instead of mur
end
FDTD = SetBoundaryCond( FDTD, BC );
%% setup CSXCAD geometry & mesh
% currently, openEMS cannot automatically generate a mesh
max_res = c0 / (f0+fc) / unit / 20; % cell size: lambda/20
CSX = InitCSX();
mesh.x = [-SimBox(1)/2 SimBox(1)/2 -substrate.width/2 substrate.width/2];
mesh.y = [-SimBox(2)/2 SimBox(2)/2 -substrate.length/2 substrate.length/2];
mesh.z = [-SimBox(3)/2 linspace(0,substrate.thickness,substrate.cells) SimBox(3) ];
mesh.z = SmoothMeshLines( mesh.z, max_res, 1.4 );
for xn=1:array.xn
for yn=1:array.yn
midX = (array.xn/2 - xn + 1/2) * array.x_spacing;
midY = (array.yn/2 - yn + 1/2) * array.y_spacing;
% feeding mesh
mesh.x = [mesh.x midX+feed.pos];
mesh.y = [mesh.y midY-feed.width/2 midY+feed.width/2];
% add patch mesh with 2/3 - 1/3 rule
mesh.x = [mesh.x midX-patch.width/2-max_res/2*0.66 midX-patch.width/2+max_res/2*0.33 midX+patch.width/2+max_res/2*0.66 midX+patch.width/2-max_res/2*0.33];
% add patch mesh with 2/3 - 1/3 rule
mesh.y = [mesh.y midY-patch.length/2-max_res/2*0.66 midY-patch.length/2+max_res/2*0.33 midY+patch.length/2+max_res/2*0.66 midY+patch.length/2-max_res/2*0.33];
end
end
mesh.x = SmoothMeshLines( mesh.x, max_res, 1.4); % create a smooth mesh between specified mesh lines
mesh.y = SmoothMeshLines( mesh.y, max_res, 1.4 );
mesh = AddPML( mesh, [8 8 8 8 8 8] ); % add equidistant cells (air around the structure)
CSX = DefineRectGrid( CSX, unit, mesh );
%% create substrate
CSX = AddMaterial( CSX, 'substrate' );
CSX = SetMaterialProperty( CSX, 'substrate', 'Epsilon', substrate.epsR, 'Kappa', substrate.kappa);
start = [-substrate.width/2 -substrate.length/2 0];
stop = [ substrate.width/2 substrate.length/2 substrate.thickness];
CSX = AddBox( CSX, 'substrate', 0, start, stop );
%% create ground (same size as substrate)
CSX = AddMetal( CSX, 'gnd' ); % create a perfect electric conductor (PEC)
start(3)=0;
stop(3) =0;
CSX = AddBox(CSX,'gnd',10,start,stop);
%%
CSX = AddMetal( CSX, 'patch' ); % create a perfect electric conductor (PEC)
number = 1;
for xn=1:array.xn
for yn=1:array.yn
midX = (array.xn/2 - xn + 1/2) * array.x_spacing;
midY = (array.yn/2 - yn + 1/2) * array.y_spacing;
% create patch
start = [midX-patch.width/2 midY-patch.length/2 substrate.thickness];
stop = [midX+patch.width/2 midY+patch.length/2 substrate.thickness];
CSX = AddBox(CSX,'patch',10,start,stop);
% apply the excitation & resist as a current source
start = [midX+feed.pos-feed.width/2 midY-feed.width/2 0];
stop = [midX+feed.pos+feed.width/2 midY+feed.width/2 substrate.thickness];
[CSX] = AddLumpedPort(CSX, 5, number,feed.R, start, stop,[0 0 1],true);
number=number+1;
end
end
%%nf2ff calc
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', -SimBox/2, SimBox/2);
if (postprocessing_only==0)
%% write openEMS compatible xml-file
WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
%% show the structure
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
%% run openEMS
RunOpenEMS( Sim_Path, Sim_CSX, openEMS_opts );
end
%% postprocessing & do the plots
freq = linspace( max([1e9,f0-fc]), f0+fc, 501 );
U = ReadUI( {'port_ut1','et'}, 'tmp/', freq ); % time domain/freq domain voltage
I = ReadUI( 'port_it1', 'tmp/', freq ); % time domain/freq domain current (half time step is corrected)
% plot time domain voltage
figure
[ax,h1,h2] = plotyy( U.TD{1}.t/1e-9, U.TD{1}.val, U.TD{2}.t/1e-9, U.TD{2}.val );
set( h1, 'Linewidth', 2 );
set( h1, 'Color', [1 0 0] );
set( h2, 'Linewidth', 2 );
set( h2, 'Color', [0 0 0] );
grid on
title( 'time domain voltage' );
xlabel( 'time t / ns' );
ylabel( ax(1), 'voltage ut1 / V' );
ylabel( ax(2), 'voltage et / V' );
% now make the y-axis symmetric to y=0 (align zeros of y1 and y2)
y1 = ylim(ax(1));
y2 = ylim(ax(2));
ylim( ax(1), [-max(abs(y1)) max(abs(y1))] );
ylim( ax(2), [-max(abs(y2)) max(abs(y2))] );
% plot feed point impedance
figure
Zin = U.FD{1}.val ./ I.FD{1}.val;
plot( freq/1e6, real(Zin), 'k-', 'Linewidth', 2 );
hold on
grid on
plot( freq/1e6, imag(Zin), 'r--', 'Linewidth', 2 );
title( 'feed point impedance' );
xlabel( 'frequency f / MHz' );
ylabel( 'impedance Z_{in} / Ohm' );
legend( 'real', 'imag' );
% plot reflection coefficient S11
figure
uf_inc = 0.5*(U.FD{1}.val + I.FD{1}.val * 50);
if_inc = 0.5*(I.FD{1}.val - U.FD{1}.val / 50);
uf_ref = U.FD{1}.val - uf_inc;
if_ref = I.FD{1}.val - if_inc;
s11 = uf_ref ./ uf_inc;
plot( freq/1e6, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
grid on
title( 'reflection coefficient S_{11}' );
xlabel( 'frequency f / MHz' );
ylabel( 'reflection coefficient |S_{11}|' );
%%
number = 1;
P_in = 0;
for xn=1:array.xn
for yn=1:array.yn
U = ReadUI( ['port_ut' int2str(number)], 'tmp/', freq ); % time domain/freq domain voltage
I = ReadUI( ['port_it' int2str(number)], 'tmp/', freq ); % time domain/freq domain current (half time step is corrected)
P_in = P_in + 0.5*U.FD{1}.val .* conj( I.FD{1}.val );
number=number+1;
end
end
%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f_res_ind = find(s11==min(s11));
f_res = freq(f_res_ind);
% calculate the far field at phi=0 degrees and at phi=90 degrees
thetaRange = (0:2:359) - 180;
phiRange = [0 90];
r = 1; % evaluate fields at radius r
disp( 'calculating far field at phi=[0 90] deg...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, thetaRange*pi/180, phiRange*pi/180);
Dlog=10*log10(nf2ff.Dmax);
% display power and directivity
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
disp( ['directivity: Dmax = ' num2str(Dlog) ' dBi'] );
disp( ['efficiency: nu_rad = ' num2str(100*nf2ff.Prad./real(P_in(f_res_ind))) ' %']);
% display phi
figure
plotFFdB(nf2ff,'xaxis','theta','param',[1 2]);
drawnow
if (draw_3d_pattern==0)
return
end
%% calculate 3D pattern
phiRange = 0:3:360;
thetaRange = unique([0:0.5:15 10:3:180]);
disp( 'calculating 3D far field...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, thetaRange*pi/180, phiRange*pi/180, 'Verbose',2,'Outfile','nf2ff_3D.h5');
figure
plotFF3D(nf2ff);
%% visualize magnetic fields
% you will find vtk dump files in the simulation folder (tmp/)
% use paraview to visulaize them
|