File: PML_reflection_analysis.m

package info (click to toggle)
openems 0.0.35%2Bgit20190103.6a75e98%2Bdfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,424 kB
  • sloc: cpp: 40,407; python: 2,028; yacc: 580; makefile: 458; lex: 350; sh: 176; ruby: 19
file content (196 lines) | stat: -rw-r--r-- 6,338 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
%
% fake-PML parallel plate waveguide example
%
% this example analyzes the reflection coefficient of a vacuum-pml
% interface
%

%
% currently this example uses a normal material with a certain conductivity
% profile and not a pml
%

close all
% clear
clc

physical_constants


postprocessing_only = 0;



%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
drawingunit = 1e-6; % specify everything in um

length = 10000;
epr = 1;

mesh_res = [200 200 200];
max_timesteps = 100000;
min_decrement = 1e-6;
f_max = 8e9;

%% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD( max_timesteps, min_decrement );
FDTD = SetGaussExcite( FDTD, f_max/2, f_max/2 );
BC = [0 0 1 1 0 0];
FDTD = SetBoundaryCond( FDTD, BC );

%% mesh grading
N_pml = 8;
pml_delta = cumsum(mesh_res(1) * 1.0 .^ (1:N_pml));
% pml_delta = cumsum([200 200 200 200 200]);

%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = 0 : mesh_res(1) : length;
mesh.x = [mesh.x(1) - fliplr(pml_delta), mesh.x];
mesh.y = -2*mesh_res(2) : mesh_res(2) : 2*mesh_res(2);
mesh.z = 0 : mesh_res(3) : 4*mesh_res(3);
CSX = DefineRectGrid( CSX, drawingunit, mesh );

%% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
g = 2; % 2..3
R0 = 1e-6; % requested analytical reflection coefficient
Zm = sqrt(MUE0/(EPS0*epr)); % calculate reflection for substrate/pml interface
delta = pml_delta(end) * drawingunit;
deltal = mean(diff(pml_delta)) * drawingunit;
kappa0 = -log(R0)*log(g)/( 2*Zm*deltal*(g^(delta/deltal)-1) );

% kappa0 = 1.05;
CSX = AddMaterial( CSX, 'pml_xmin' );
CSX = SetMaterialProperty( CSX, 'pml_xmin', 'Epsilon', epr );
CSX = SetMaterialProperty( CSX, 'pml_xmin', 'Kappa', kappa0 );
CSX = SetMaterialProperty( CSX, 'pml_xmin', 'Sigma', kappa0 * MUE0/(EPS0*epr) );
CSX = SetMaterialWeight( CSX, 'pml_xmin', 'Kappa', [num2str(g) '^((abs(x-100)-' num2str(abs(mesh.x(N_pml+1))) ')/(' num2str(deltal) '/' num2str(drawingunit) '))'] ); % g^(rho/deltal)*kappa0
CSX = SetMaterialWeight( CSX, 'pml_xmin', 'Sigma', [num2str(g) '^((abs(x-100)-' num2str(abs(mesh.x(N_pml+1))) ')/(' num2str(deltal) '/' num2str(drawingunit) '))'] );
start = [mesh.x(1), mesh.y(1),   mesh.z(1)];
stop  = [100, mesh.y(end), mesh.z(end)];
CSX = AddBox( CSX, 'pml_xmin', 1, start, stop );

figure
x = [-fliplr(pml_delta) 50];
plot( x, kappa0 * g.^((abs(x-50)-abs(mesh.x(N_pml+1)))./(deltal/drawingunit)) ,'x-');
xlabel( 'x / m' );
ylabel( 'kappa' );
figure
title( 'conductivity profile inside the material' );

%% excitation
CSX = AddExcitation( CSX, 'excitation1', 0, [0 0 1]);
idx = interp1( mesh.x, 1:numel(mesh.x), length*2/3, 'nearest' );
start = [mesh.x(idx), mesh.y(1),   mesh.z(1)];
stop  = [mesh.x(idx), mesh.y(end), mesh.z(end)];
CSX = AddBox( CSX, 'excitation1', 0, start, stop );

%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump( CSX, 'Et_', 'DumpMode', 2 );
start = [mesh.x(1),   mesh.y(1),   mesh.z(3)];
stop  = [mesh.x(end), mesh.y(end), mesh.z(3)];
CSX = AddBox( CSX, 'Et_', 0, start, stop );

CSX = AddDump( CSX, 'Ht_', 'DumpType', 1, 'DumpMode', 2 );
CSX = AddBox( CSX, 'Ht_', 0, start, stop );

% hdf5 file
CSX = AddDump( CSX, 'E', 'DumpType', 0, 'DumpMode', 2, 'FileType', 1 );
idx = interp1( mesh.x, 1:numel(mesh.x), length*1/3, 'nearest' );
start = [mesh.x(idx), mesh.y(3), mesh.z(1)];
stop  = [mesh.x(idx), mesh.y(3), mesh.z(end)];
CSX = AddBox( CSX, 'E', 0, start, stop );

% hdf5 file
CSX = AddDump( CSX, 'H', 'DumpType', 1, 'DumpMode', 2, 'FileType', 1 );
idx = interp1( mesh.x, 1:numel(mesh.x), length*1/3, 'nearest' );
start = [mesh.x(idx), mesh.y(1),   mesh.z(3)];
stop  = [mesh.x(idx), mesh.y(end), mesh.z(3)];
CSX = AddBox( CSX, 'H', 0, start, stop );

%% define openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
% openEMS_opts = [openEMS_opts ' --debug-operator'];
% openEMS_opts = [openEMS_opts ' --debug-boxes'];
% openEMS_opts = [openEMS_opts ' --showProbeDiscretization'];
openEMS_opts = [openEMS_opts ' --engine=fastest'];

Sim_Path = 'tmp';
Sim_CSX = 'PML_reflection_analysis.xml';

if ~postprocessing_only
    [~,~,~] = rmdir(Sim_Path,'s');
    [~,~,~] = mkdir(Sim_Path);
end

%% Write openEMS compatible xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);

%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~postprocessing_only
    savePath = pwd;
    cd(Sim_Path); %cd to working dir
    args = [Sim_CSX ' ' openEMS_opts];
    invoke_openEMS(args);
    cd(savePath)
end


%% postproc & do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% E_coords = ReadHDF5Mesh( [Sim_Path '/E.h5'] );
% H_coords = ReadHDF5Mesh( [Sim_Path '/H.h5'] );
E = ReadHDF5FieldData( [Sim_Path '/E.h5'] );
H = ReadHDF5FieldData( [Sim_Path '/H.h5'] );
E_val = cellfun( @(x) squeeze(x(1,1,:,3)), E.values, 'UniformOutput', false );
H_val = cellfun( @(x) squeeze(x(1,:,1,2)), H.values, 'UniformOutput', false );
E_val = cell2mat(E_val);
H_val = cell2mat(H_val.');

% pick center point
Et = E_val(3,:);
Ht = H_val(:,3).';

delta_t_2 = H.time(1) - E.time(1); % half time-step (s) 

% create finer frequency resolution
f = linspace( 0, f_max, 1601 );
Ef = DFT_time2freq( E.time, Et, f );
Hf = DFT_time2freq( H.time, Ht, f );
Hf = Hf .* exp(-1i*2*pi*f*delta_t_2); % compensate half time-step advance of H-field

% H is now time interpolated, but the position is not corrected with
% respect to E

% figure
% plot( E.time/1e-6, Et );
% xlabel('time (us)');
% ylabel('amplitude (V)');
% grid on;
% title( 'Time domain voltage probe' );
% 
% figure
% plot( H.time/1e-6, Ht );
% xlabel('time (us)');
% ylabel('amplitude (A)');
% grid on;
% title( 'Time domain current probe' );


Z0 = sqrt(MUE0/EPS0); % line impedance
Z = Ef ./ Hf; % impedance at measurement plane
gamma = (Z - Z0) ./ (Z + Z0);

plot( f/1e9, 20*log10(abs(gamma)),'Linewidth',2);
xlabel('frequency (GHz)');
ylabel('reflection coefficient gamma (dB)');
grid on;
title( 'Reflection Coefficient' );

if exist('ref_1','var')
    hold on
    plot( f/1e9, ref_1,'--','Linewidth',2, 'Color', [1 0 0]);
    hold off
end
ref_1 = 20*log10(abs(gamma));