1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
%
% fake-PML parallel plate waveguide example
%
% this example analyzes the reflection coefficient of a vacuum-pml
% interface
%
%
% currently this example uses a normal material with a certain conductivity
% profile and not a pml
%
close all
% clear
clc
physical_constants
postprocessing_only = 0;
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
drawingunit = 1e-6; % specify everything in um
length = 10000;
epr = 1;
mesh_res = [200 200 200];
max_timesteps = 100000;
min_decrement = 1e-6;
f_max = 8e9;
%% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD( max_timesteps, min_decrement );
FDTD = SetGaussExcite( FDTD, f_max/2, f_max/2 );
BC = [0 0 1 1 0 0];
FDTD = SetBoundaryCond( FDTD, BC );
%% mesh grading
N_pml = 8;
pml_delta = cumsum(mesh_res(1) * 1.0 .^ (1:N_pml));
% pml_delta = cumsum([200 200 200 200 200]);
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = 0 : mesh_res(1) : length;
mesh.x = [mesh.x(1) - fliplr(pml_delta), mesh.x];
mesh.y = -2*mesh_res(2) : mesh_res(2) : 2*mesh_res(2);
mesh.z = 0 : mesh_res(3) : 4*mesh_res(3);
CSX = DefineRectGrid( CSX, drawingunit, mesh );
%% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
g = 2; % 2..3
R0 = 1e-6; % requested analytical reflection coefficient
Zm = sqrt(MUE0/(EPS0*epr)); % calculate reflection for substrate/pml interface
delta = pml_delta(end) * drawingunit;
deltal = mean(diff(pml_delta)) * drawingunit;
kappa0 = -log(R0)*log(g)/( 2*Zm*deltal*(g^(delta/deltal)-1) );
% kappa0 = 1.05;
CSX = AddMaterial( CSX, 'pml_xmin' );
CSX = SetMaterialProperty( CSX, 'pml_xmin', 'Epsilon', epr );
CSX = SetMaterialProperty( CSX, 'pml_xmin', 'Kappa', kappa0 );
CSX = SetMaterialProperty( CSX, 'pml_xmin', 'Sigma', kappa0 * MUE0/(EPS0*epr) );
CSX = SetMaterialWeight( CSX, 'pml_xmin', 'Kappa', [num2str(g) '^((abs(x-100)-' num2str(abs(mesh.x(N_pml+1))) ')/(' num2str(deltal) '/' num2str(drawingunit) '))'] ); % g^(rho/deltal)*kappa0
CSX = SetMaterialWeight( CSX, 'pml_xmin', 'Sigma', [num2str(g) '^((abs(x-100)-' num2str(abs(mesh.x(N_pml+1))) ')/(' num2str(deltal) '/' num2str(drawingunit) '))'] );
start = [mesh.x(1), mesh.y(1), mesh.z(1)];
stop = [100, mesh.y(end), mesh.z(end)];
CSX = AddBox( CSX, 'pml_xmin', 1, start, stop );
figure
x = [-fliplr(pml_delta) 50];
plot( x, kappa0 * g.^((abs(x-50)-abs(mesh.x(N_pml+1)))./(deltal/drawingunit)) ,'x-');
xlabel( 'x / m' );
ylabel( 'kappa' );
figure
title( 'conductivity profile inside the material' );
%% excitation
CSX = AddExcitation( CSX, 'excitation1', 0, [0 0 1]);
idx = interp1( mesh.x, 1:numel(mesh.x), length*2/3, 'nearest' );
start = [mesh.x(idx), mesh.y(1), mesh.z(1)];
stop = [mesh.x(idx), mesh.y(end), mesh.z(end)];
CSX = AddBox( CSX, 'excitation1', 0, start, stop );
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump( CSX, 'Et_', 'DumpMode', 2 );
start = [mesh.x(1), mesh.y(1), mesh.z(3)];
stop = [mesh.x(end), mesh.y(end), mesh.z(3)];
CSX = AddBox( CSX, 'Et_', 0, start, stop );
CSX = AddDump( CSX, 'Ht_', 'DumpType', 1, 'DumpMode', 2 );
CSX = AddBox( CSX, 'Ht_', 0, start, stop );
% hdf5 file
CSX = AddDump( CSX, 'E', 'DumpType', 0, 'DumpMode', 2, 'FileType', 1 );
idx = interp1( mesh.x, 1:numel(mesh.x), length*1/3, 'nearest' );
start = [mesh.x(idx), mesh.y(3), mesh.z(1)];
stop = [mesh.x(idx), mesh.y(3), mesh.z(end)];
CSX = AddBox( CSX, 'E', 0, start, stop );
% hdf5 file
CSX = AddDump( CSX, 'H', 'DumpType', 1, 'DumpMode', 2, 'FileType', 1 );
idx = interp1( mesh.x, 1:numel(mesh.x), length*1/3, 'nearest' );
start = [mesh.x(idx), mesh.y(1), mesh.z(3)];
stop = [mesh.x(idx), mesh.y(end), mesh.z(3)];
CSX = AddBox( CSX, 'H', 0, start, stop );
%% define openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
% openEMS_opts = [openEMS_opts ' --debug-operator'];
% openEMS_opts = [openEMS_opts ' --debug-boxes'];
% openEMS_opts = [openEMS_opts ' --showProbeDiscretization'];
openEMS_opts = [openEMS_opts ' --engine=fastest'];
Sim_Path = 'tmp';
Sim_CSX = 'PML_reflection_analysis.xml';
if ~postprocessing_only
[~,~,~] = rmdir(Sim_Path,'s');
[~,~,~] = mkdir(Sim_Path);
end
%% Write openEMS compatible xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~postprocessing_only
savePath = pwd;
cd(Sim_Path); %cd to working dir
args = [Sim_CSX ' ' openEMS_opts];
invoke_openEMS(args);
cd(savePath)
end
%% postproc & do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% E_coords = ReadHDF5Mesh( [Sim_Path '/E.h5'] );
% H_coords = ReadHDF5Mesh( [Sim_Path '/H.h5'] );
E = ReadHDF5FieldData( [Sim_Path '/E.h5'] );
H = ReadHDF5FieldData( [Sim_Path '/H.h5'] );
E_val = cellfun( @(x) squeeze(x(1,1,:,3)), E.values, 'UniformOutput', false );
H_val = cellfun( @(x) squeeze(x(1,:,1,2)), H.values, 'UniformOutput', false );
E_val = cell2mat(E_val);
H_val = cell2mat(H_val.');
% pick center point
Et = E_val(3,:);
Ht = H_val(:,3).';
delta_t_2 = H.time(1) - E.time(1); % half time-step (s)
% create finer frequency resolution
f = linspace( 0, f_max, 1601 );
Ef = DFT_time2freq( E.time, Et, f );
Hf = DFT_time2freq( H.time, Ht, f );
Hf = Hf .* exp(-1i*2*pi*f*delta_t_2); % compensate half time-step advance of H-field
% H is now time interpolated, but the position is not corrected with
% respect to E
% figure
% plot( E.time/1e-6, Et );
% xlabel('time (us)');
% ylabel('amplitude (V)');
% grid on;
% title( 'Time domain voltage probe' );
%
% figure
% plot( H.time/1e-6, Ht );
% xlabel('time (us)');
% ylabel('amplitude (A)');
% grid on;
% title( 'Time domain current probe' );
Z0 = sqrt(MUE0/EPS0); % line impedance
Z = Ef ./ Hf; % impedance at measurement plane
gamma = (Z - Z0) ./ (Z + Z0);
plot( f/1e9, 20*log10(abs(gamma)),'Linewidth',2);
xlabel('frequency (GHz)');
ylabel('reflection coefficient gamma (dB)');
grid on;
title( 'Reflection Coefficient' );
if exist('ref_1','var')
hold on
plot( f/1e9, ref_1,'--','Linewidth',2, 'Color', [1 0 0]);
hold off
end
ref_1 = 20*log10(abs(gamma));
|