1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
%
% resistance "sheet" example
%
% this example calculates the reflection coefficient of a sheet resistance
% at the end of a parallel plate wave guide
%
% play around with the R and epr values
%
close all
clear
clc
physical_constants
postprocessing_only = 0;
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
epr = 1; % relative permittivity of the material inside the parallel plate waveguide
% define the resistance
R = sqrt(MUE0/(EPS0*epr)); % matched load (no reflections) (vacuum: approx. 377 Ohm)
% R = 1e-10; % short circuit (reflection coefficient = -1)
% R = 1e10; % open circuit (reflection coefficient = 1)
drawingunit = 1e-6; % specify everything in um
length = 10000;
mesh_res = [200 200 200];
max_timesteps = 100000;
min_decrement = 1e-6;
f_max = 1e9;
%% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD( max_timesteps, min_decrement );
FDTD = SetGaussExcite( FDTD, f_max/2, f_max/2 );
BC = [1 2 1 1 0 0]; % 0:PEC 1:PMC 2:MUR-ABC
FDTD = SetBoundaryCond( FDTD, BC );
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = 0 : mesh_res(1) : length;
mesh.y = -2*mesh_res(2) : mesh_res(2) : 2*mesh_res(2);
mesh.z = 0 : mesh_res(3) : 4*mesh_res(3);
CSX = DefineRectGrid( CSX, drawingunit, mesh );
%% measurement plane & reference plane
meas_plane_xidx = interp1( mesh.x, 1:numel(mesh.x), length*1/3, 'nearest' );
ref_plane_xidx = 3;
%% fill the parallel plate waveguide with material
CSX = AddMaterial( CSX, 'm1' );
CSX = SetMaterialProperty( CSX, 'm1', 'Epsilon', epr );
start = [mesh.x(1), mesh.y(1), mesh.z(1)];
stop = [mesh.x(end), mesh.y(end), mesh.z(end)];
CSX = AddBox( CSX, 'm1', -1, start, stop );
%% excitation
CSX = AddExcitation( CSX, 'excitation1', 0, [0 0 1]);
idx = interp1( mesh.x, 1:numel(mesh.x), length*2/3, 'nearest' );
start = [mesh.x(idx), mesh.y(1), mesh.z(1)];
stop = [mesh.x(idx), mesh.y(end), mesh.z(end)];
CSX = AddBox( CSX, 'excitation1', 0, start, stop );
%% define the sheet resistance
start = [mesh.x(ref_plane_xidx-1), mesh.y(1), mesh.z(1)];
stop = [mesh.x(ref_plane_xidx), mesh.y(end), mesh.z(end)];
l = abs(mesh.z(end) - mesh.z(1)) * drawingunit; % length of the "sheet"
A = abs(start(1) - stop(1)) * abs(mesh.y(end) - mesh.y(1)) * drawingunit^2; % area of the "sheet"
kappa = l/A / R; % [kappa] = S/m
CSX = AddMaterial( CSX, 'sheet_resistance' );
CSX = SetMaterialProperty( CSX, 'sheet_resistance', 'Kappa', kappa );
CSX = AddBox( CSX, 'sheet_resistance', 0, start, stop );
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump( CSX, 'Et_', 'DumpMode', 2 );
start = [mesh.x(1), mesh.y(1), mesh.z(3)];
stop = [mesh.x(end), mesh.y(end), mesh.z(3)];
CSX = AddBox( CSX, 'Et_', 0, start, stop );
CSX = AddDump( CSX, 'Ht_', 'DumpType', 1, 'DumpMode', 2 );
CSX = AddBox( CSX, 'Ht_', 0, start, stop );
% hdf5 file
CSX = AddDump( CSX, 'E', 'DumpType', 0, 'DumpMode', 2, 'FileType', 1 );
start = [mesh.x(meas_plane_xidx), mesh.y(3), mesh.z(1)];
stop = [mesh.x(meas_plane_xidx), mesh.y(3), mesh.z(end)];
CSX = AddBox( CSX, 'E', 0, start, stop );
% hdf5 file
CSX = AddDump( CSX, 'H', 'DumpType', 1, 'DumpMode', 2, 'FileType', 1 );
start = [mesh.x(meas_plane_xidx), mesh.y(1), mesh.z(3)];
stop = [mesh.x(meas_plane_xidx), mesh.y(end), mesh.z(3)];
CSX = AddBox( CSX, 'H', 0, start, stop );
%% define openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
% openEMS_opts = [openEMS_opts ' --debug-operator'];
% openEMS_opts = [openEMS_opts ' --debug-boxes'];
% openEMS_opts = [openEMS_opts ' --showProbeDiscretization'];
openEMS_opts = [openEMS_opts ' --engine=fastest'];
Sim_Path = 'tmp';
Sim_CSX = 'tmp.xml';
if ~postprocessing_only
[~,~,~] = rmdir(Sim_Path,'s');
[~,~,~] = mkdir(Sim_Path);
end
%% Write openEMS compatible xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~postprocessing_only
savePath = pwd;
cd(Sim_Path); %cd to working dir
args = [Sim_CSX ' ' openEMS_opts];
invoke_openEMS(args);
cd(savePath)
end
%% postproc & do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% E_coords = ReadHDF5Mesh( [Sim_Path '/E.h5'] );
% H_coords = ReadHDF5Mesh( [Sim_Path '/H.h5'] );
E = ReadHDF5FieldData( [Sim_Path '/E.h5'] );
H = ReadHDF5FieldData( [Sim_Path '/H.h5'] );
E_val = cellfun( @(x) squeeze(x(1,1,:,3)), E.values, 'UniformOutput', false );
H_val = cellfun( @(x) squeeze(x(1,:,1,2)), H.values, 'UniformOutput', false );
E_val = cell2mat(E_val);
H_val = cell2mat(H_val.');
% pick center point
Et = E_val(3,:);
Ht = H_val(:,3).';
delta_t_2 = H.time(1) - E.time(1); % half time-step (s)
% create finer frequency resolution
f = linspace( 0, f_max, 201 );
Ef = DFT_time2freq( E.time, Et, f );
Hf = DFT_time2freq( H.time, Ht, f );
Hf = Hf .* exp(-1i*2*pi*f*delta_t_2); % compensate half time-step advance of H-field
% H is now time interpolated, but the position is not corrected with
% respect to E
% figure
% plot( E.time/1e-6, Et );
% xlabel('time (us)');
% ylabel('amplitude (V)');
% grid on;
% title( 'Time domain voltage probe' );
%
% figure
% plot( H.time/1e-6, Ht );
% xlabel('time (us)');
% ylabel('amplitude (A)');
% grid on;
% title( 'Time domain current probe' );
Z0 = sqrt(MUE0/(EPS0*epr)); % line impedance
Z = Ef ./ Hf; % impedance at measurement plane
gamma = (Z - Z0) ./ (Z + Z0);
% reference plane shift
beta = 2*pi*f * sqrt(MUE0*(EPS0*epr)); % TEM wave
meas_plane_x = mesh.x(meas_plane_xidx);
ref_plane_x = mesh.x(ref_plane_xidx);
gamma_refplane = gamma .* exp(2i*beta* (meas_plane_x-ref_plane_x)*drawingunit);
Z_refplane = Z0 * (1+gamma_refplane)./(1-gamma_refplane);
% smith chart
figure
if exist( 'smith', 'file' )
% smith chart
% www.ece.rutgers.edu/~orfanidi/ewa
% or cmt toolbox from git.ate.uni-duisburg.de
smith
else
% poor man smith chart
plot( sin(0:0.01:2*pi), cos(0:0.01:2*pi), 'Color', [.7 .7 .7] );
hold on
% plot( 0.25+0.75*sin(0:0.01:2*pi), 0.75*cos(0:0.01:2*pi), 'Color', [.7 .7 .7] );
plot( 0.5+0.5*sin(0:0.01:2*pi), 0.5*cos(0:0.01:2*pi), 'Color', [.7 .7 .7] );
% plot( 0.75+0.25*sin(0:0.01:2*pi), 0.25*cos(0:0.01:2*pi), 'Color', [.7 .7 .7] );
plot( [-1 1], [0 0], 'Color', [.7 .7 .7] );
axis equal
end
plot( real(gamma_refplane), imag(gamma_refplane), 'r*' );
% plot( real(gamma), imag(gamma), 'k*' );
title( 'reflection coefficient S11 at reference plane' )
figure
plot( f/1e9, [real(Z_refplane);imag(Z_refplane)],'Linewidth',2);
xlabel('frequency (GHz)');
ylabel('impedance (Ohm)');
grid on;
title( 'Impedance at reference plane' );
legend( {'real','imag'} );
|