File: resistance_sheet.m

package info (click to toggle)
openems 0.0.35%2Bgit20190103.6a75e98%2Bdfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,424 kB
  • sloc: cpp: 40,407; python: 2,028; yacc: 580; makefile: 458; lex: 350; sh: 176; ruby: 19
file content (207 lines) | stat: -rw-r--r-- 6,892 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
%
% resistance "sheet" example
%
% this example calculates the reflection coefficient of a sheet resistance
% at the end of a parallel plate wave guide
%
% play around with the R and epr values
%

close all
clear
clc

physical_constants


postprocessing_only = 0;



%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
epr = 1; % relative permittivity of the material inside the parallel plate waveguide

% define the resistance
R = sqrt(MUE0/(EPS0*epr)); % matched load (no reflections) (vacuum: approx. 377 Ohm)
% R = 1e-10; % short circuit (reflection coefficient = -1)
% R = 1e10; % open circuit (reflection coefficient = 1)


drawingunit = 1e-6; % specify everything in um
length = 10000;
mesh_res = [200 200 200];
max_timesteps = 100000;
min_decrement = 1e-6;
f_max = 1e9;

%% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD( max_timesteps, min_decrement );
FDTD = SetGaussExcite( FDTD, f_max/2, f_max/2 );
BC = [1 2 1 1 0 0]; % 0:PEC  1:PMC  2:MUR-ABC
FDTD = SetBoundaryCond( FDTD, BC );

%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = 0 : mesh_res(1) : length;
mesh.y = -2*mesh_res(2) : mesh_res(2) : 2*mesh_res(2);
mesh.z = 0 : mesh_res(3) : 4*mesh_res(3);
CSX = DefineRectGrid( CSX, drawingunit, mesh );

%% measurement plane & reference plane
meas_plane_xidx = interp1( mesh.x, 1:numel(mesh.x), length*1/3, 'nearest' );
ref_plane_xidx = 3;

%% fill the parallel plate waveguide with material
CSX = AddMaterial( CSX, 'm1' );
CSX = SetMaterialProperty( CSX, 'm1', 'Epsilon', epr );
start = [mesh.x(1),   mesh.y(1),   mesh.z(1)];
stop  = [mesh.x(end), mesh.y(end), mesh.z(end)];
CSX = AddBox( CSX, 'm1', -1, start, stop );

%% excitation
CSX = AddExcitation( CSX, 'excitation1', 0, [0 0 1]);
idx = interp1( mesh.x, 1:numel(mesh.x), length*2/3, 'nearest' );
start = [mesh.x(idx), mesh.y(1),   mesh.z(1)];
stop  = [mesh.x(idx), mesh.y(end), mesh.z(end)];
CSX = AddBox( CSX, 'excitation1', 0, start, stop );

%% define the sheet resistance
start = [mesh.x(ref_plane_xidx-1), mesh.y(1),   mesh.z(1)];
stop  = [mesh.x(ref_plane_xidx),   mesh.y(end), mesh.z(end)];
l = abs(mesh.z(end) - mesh.z(1)) * drawingunit; % length of the "sheet"
A = abs(start(1) - stop(1)) * abs(mesh.y(end) - mesh.y(1)) * drawingunit^2; % area of the "sheet"
kappa = l/A / R; % [kappa] = S/m
CSX = AddMaterial( CSX, 'sheet_resistance' );
CSX = SetMaterialProperty( CSX, 'sheet_resistance', 'Kappa', kappa );
CSX = AddBox( CSX, 'sheet_resistance', 0, start, stop );

%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump( CSX, 'Et_', 'DumpMode', 2 );
start = [mesh.x(1),   mesh.y(1),   mesh.z(3)];
stop  = [mesh.x(end), mesh.y(end), mesh.z(3)];
CSX = AddBox( CSX, 'Et_', 0, start, stop );

CSX = AddDump( CSX, 'Ht_', 'DumpType', 1, 'DumpMode', 2 );
CSX = AddBox( CSX, 'Ht_', 0, start, stop );

% hdf5 file
CSX = AddDump( CSX, 'E', 'DumpType', 0, 'DumpMode', 2, 'FileType', 1 );
start = [mesh.x(meas_plane_xidx), mesh.y(3), mesh.z(1)];
stop  = [mesh.x(meas_plane_xidx), mesh.y(3), mesh.z(end)];
CSX = AddBox( CSX, 'E', 0, start, stop );

% hdf5 file
CSX = AddDump( CSX, 'H', 'DumpType', 1, 'DumpMode', 2, 'FileType', 1 );
start = [mesh.x(meas_plane_xidx), mesh.y(1),   mesh.z(3)];
stop  = [mesh.x(meas_plane_xidx), mesh.y(end), mesh.z(3)];
CSX = AddBox( CSX, 'H', 0, start, stop );

%% define openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
% openEMS_opts = [openEMS_opts ' --debug-operator'];
% openEMS_opts = [openEMS_opts ' --debug-boxes'];
% openEMS_opts = [openEMS_opts ' --showProbeDiscretization'];
openEMS_opts = [openEMS_opts ' --engine=fastest'];

Sim_Path = 'tmp';
Sim_CSX = 'tmp.xml';

if ~postprocessing_only
    [~,~,~] = rmdir(Sim_Path,'s');
    [~,~,~] = mkdir(Sim_Path);
end

%% Write openEMS compatible xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);

%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~postprocessing_only
    savePath = pwd;
    cd(Sim_Path); %cd to working dir
    args = [Sim_CSX ' ' openEMS_opts];
    invoke_openEMS(args);
    cd(savePath)
end


%% postproc & do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% E_coords = ReadHDF5Mesh( [Sim_Path '/E.h5'] );
% H_coords = ReadHDF5Mesh( [Sim_Path '/H.h5'] );
E = ReadHDF5FieldData( [Sim_Path '/E.h5'] );
H = ReadHDF5FieldData( [Sim_Path '/H.h5'] );
E_val = cellfun( @(x) squeeze(x(1,1,:,3)), E.values, 'UniformOutput', false );
H_val = cellfun( @(x) squeeze(x(1,:,1,2)), H.values, 'UniformOutput', false );
E_val = cell2mat(E_val);
H_val = cell2mat(H_val.');

% pick center point
Et = E_val(3,:);
Ht = H_val(:,3).';

delta_t_2 = H.time(1) - E.time(1); % half time-step (s) 

% create finer frequency resolution
f = linspace( 0, f_max, 201 );
Ef = DFT_time2freq( E.time, Et, f );
Hf = DFT_time2freq( H.time, Ht, f );
Hf = Hf .* exp(-1i*2*pi*f*delta_t_2); % compensate half time-step advance of H-field

% H is now time interpolated, but the position is not corrected with
% respect to E

% figure
% plot( E.time/1e-6, Et );
% xlabel('time (us)');
% ylabel('amplitude (V)');
% grid on;
% title( 'Time domain voltage probe' );
% 
% figure
% plot( H.time/1e-6, Ht );
% xlabel('time (us)');
% ylabel('amplitude (A)');
% grid on;
% title( 'Time domain current probe' );


Z0 = sqrt(MUE0/(EPS0*epr)); % line impedance
Z = Ef ./ Hf; % impedance at measurement plane
gamma = (Z - Z0) ./ (Z + Z0);

% reference plane shift
beta = 2*pi*f * sqrt(MUE0*(EPS0*epr)); % TEM wave
meas_plane_x = mesh.x(meas_plane_xidx);
ref_plane_x = mesh.x(ref_plane_xidx);
gamma_refplane = gamma .* exp(2i*beta* (meas_plane_x-ref_plane_x)*drawingunit);
Z_refplane = Z0 * (1+gamma_refplane)./(1-gamma_refplane);

% smith chart
figure
if exist( 'smith', 'file' )
    % smith chart
    % www.ece.rutgers.edu/~orfanidi/ewa
    % or cmt toolbox from git.ate.uni-duisburg.de
    smith
else
    % poor man smith chart
    plot( sin(0:0.01:2*pi), cos(0:0.01:2*pi), 'Color', [.7 .7 .7] );
    hold on
%     plot( 0.25+0.75*sin(0:0.01:2*pi), 0.75*cos(0:0.01:2*pi), 'Color', [.7 .7 .7] );
    plot( 0.5+0.5*sin(0:0.01:2*pi), 0.5*cos(0:0.01:2*pi), 'Color', [.7 .7 .7] );
%     plot( 0.75+0.25*sin(0:0.01:2*pi), 0.25*cos(0:0.01:2*pi), 'Color', [.7 .7 .7] );
    plot( [-1 1], [0 0], 'Color', [.7 .7 .7] );
    axis equal
end
plot( real(gamma_refplane), imag(gamma_refplane), 'r*' );
% plot( real(gamma), imag(gamma), 'k*' );
title( 'reflection coefficient S11 at reference plane' )

figure
plot( f/1e9, [real(Z_refplane);imag(Z_refplane)],'Linewidth',2);
xlabel('frequency (GHz)');
ylabel('impedance (Ohm)');
grid on;
title( 'Impedance at reference plane' );
legend( {'real','imag'} );