1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
function directional_coupler
%
% EXAMPLE / microstrip / directional_coupler
%
% Stacked directional coupler in microstrip technology.
%
% This example demonstrates:
% - simple microstrip geometry
% - S-parameter calculation using the ypar-method
% - display of coupler parameters
% - display of S11 (smith chart)
%
%
% Tested with
% - Matlab 2010b
% - Octave 3.2.4
% - openEMS v0.0.17
%
% (C) 2010 Sebastian Held <sebastian.held@gmx.de>
clear
close all
clc
% sim settings
showStructure = 1;
runSimulation = 1;
for n=1:4
if n > 1, showStructure = 0; end
ports{n} = sim( n, showStructure, runSimulation );
end
postprocess( ports );
function ports = sim( simnr, showStructure, runSimulation )
physical_constants
% setup the simulation
drawingunit = 1e-6; % specify everything in um
Sim_Path = ['tmp' int2str(simnr)];
Sim_CSX = 'tmp.xml';
f_max = 100e6;
lambda = c0/f_max;
% specify the coupler
pcb1.w = 147000;
pcb1.h = 54500;
pcb1.t = 1524;
pcb1.epr = 3;
msl1.w = 135000;
msl1.h = 2800;
pcb2.w = 107000;
pcb2.h = 14000;
pcb2.t = 1524;
pcb2.epr = 3;
msl2.w = 95000;
msl2.h = 4000;
CSX = InitCSX();
% create the mesh
mesh.x = [-pcb1.w/2 pcb1.w/2 -pcb2.w/2 pcb2.w/2 -msl1.w/2 msl1.w/2 -msl2.w/2 msl2.w/2];
mesh.x = [mesh.x linspace(-msl2.w/2,-msl2.w/2+msl2.h, 5) linspace(msl2.w/2,msl2.w/2-msl2.h, 5)];
mesh.y = [-pcb1.h/2 pcb1.h/2 -pcb2.h/2 pcb2.h/2 -msl1.h/2 msl1.h/2 -msl2.h/2 msl2.h/2];
mesh.z = [linspace(0,pcb1.t,5) linspace(pcb1.t,pcb1.t+pcb2.t,5)];
mesh.z = [mesh.z mesh.z(end)+10*(mesh.z(end)-mesh.z(1))]; % add space above pcb
res = lambda/sqrt(max([pcb1.epr,pcb2.epr])) / 20 / drawingunit;
mesh.x = SmoothMeshLines2(mesh.x,res);
mesh.y = SmoothMeshLines2(mesh.y,res);
mesh.z = SmoothMeshLines2(mesh.z,res);
mesh = AddPML( mesh, [8 8 8 8 8 8] ); % add space for PML
CSX = DefineRectGrid( CSX, drawingunit, mesh );
%% create the structure
% microstrip
CSX = AddMetal( CSX, 'PEC' );
start = [-msl1.w/2, -msl1.h/2, pcb1.t];
stop = [ msl1.w/2, msl1.h/2, pcb1.t];
priority = 100; % the geometric priority is set to 100
CSX = AddBox( CSX, 'PEC', priority, start, stop );
% ground plane
CSX = AddMetal( CSX, 'PEC_ground' );
start = [-pcb1.w/2, -pcb1.h/2, 0];
stop = [ pcb1.w/2, pcb1.h/2, 0];
CSX = AddBox( CSX, 'PEC_ground', priority, start, stop );
% substrate 1
start = [-pcb1.w/2, -pcb1.h/2, 0];
stop = [ pcb1.w/2, pcb1.h/2, pcb1.t];
priority = 10;
CSX = AddMaterial( CSX, 'substrate1' );
CSX = SetMaterialProperty( CSX, 'substrate1', 'Epsilon', pcb1.epr );
CSX = AddBox( CSX, 'substrate1', priority, start, stop );
% substrate 2
start = [-pcb2.w/2, -pcb2.h/2, pcb1.t];
stop = [ pcb2.w/2, pcb2.h/2, pcb1.t+pcb2.t];
priority = 10;
CSX = AddMaterial( CSX, 'substrate2' );
CSX = SetMaterialProperty( CSX, 'substrate2', 'Epsilon', pcb2.epr );
CSX = AddBox( CSX, 'substrate2', priority, start, stop );
% stripline
start = [-msl2.w/2, -msl2.h/2, pcb1.t+pcb2.t];
stop = [ msl2.w/2, msl2.h/2, pcb1.t+pcb2.t];
priority = 100;
CSX = AddBox( CSX, 'PEC', priority, start, stop );
% connections
start = [-msl2.w/2, -msl2.h/2, pcb1.t+pcb2.t];
stop = [-msl2.w/2+msl2.h, -pcb2.h/2, pcb1.t+pcb2.t];
priority = 100;
CSX = AddBox( CSX, 'PEC', priority, start, stop );
start = [ msl2.w/2, -msl2.h/2, pcb1.t+pcb2.t];
stop = [ msl2.w/2-msl2.h, -pcb2.h/2, pcb1.t+pcb2.t];
priority = 100;
CSX = AddBox( CSX, 'PEC', priority, start, stop );
%% ports
% this project needs 4 simulations
for n=1:4
portexcite{n} = [];
end
portexcite{simnr} = 'excite';
% port 1: input port
start = [-msl1.w/2, 0, pcb1.t];
stop = [-msl1.w/2, 0, 0];
[CSX ports{1}] = AddCurvePort( CSX, 999, 1, 50, start, stop, portexcite{1} );
% port 2: output port
start = [msl1.w/2, 0, pcb1.t];
stop = [msl1.w/2, 0, 0];
[CSX ports{2}] = AddCurvePort( CSX, 999, 2, 50, start, stop, portexcite{2} );
% port 3: coupled port
start = [-msl2.w/2+msl2.h/2, -pcb2.h/2, pcb1.t+pcb2.t];
stop = [-msl2.w/2+msl2.h/2, -pcb2.h/2, 0];
[CSX ports{3}] = AddCurvePort( CSX, 999, 3, 50, start, stop, portexcite{3} );
% port 4: isolated port
start = [msl2.w/2-msl2.h/2, -pcb2.h/2, pcb1.t+pcb2.t];
stop = [msl2.w/2-msl2.h/2, -pcb2.h/2, 0];
[CSX ports{4}] = AddCurvePort( CSX, 999, 4, 50, start, stop, portexcite{4} );
%% setup FDTD parameters & excitation function
max_timesteps = 50000;
min_decrement = 1e-6;
FDTD = InitFDTD( max_timesteps, min_decrement );
FDTD = SetGaussExcite( FDTD, 0, f_max );
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'};
BC = {'MUR' 'MUR' 'MUR' 'MUR' 'MUR' 'MUR'}; % faster
FDTD = SetBoundaryCond( FDTD, BC );
%% Write openEMS compatible xml-file
if runSimulation
[dummy,dummy,dummy] = rmdir(Sim_Path,'s');
end
[dummy,dummy,dummy] = mkdir(Sim_Path);
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
if showStructure
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
end
%% run openEMS
openEMS_opts = '';
openEMS_opts = [openEMS_opts ' --engine=fastest'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
% openEMS_opts = [openEMS_opts ' --debug-boxes'];
if runSimulation
RunOpenEMS( Sim_Path, Sim_CSX, openEMS_opts );
end
function postprocess( ports )
f = linspace( 0, 100e6, 201 );
Y = calc_ypar( f, ports{1}, 'tmp' );
R = 50;
S = y2s(Y,R);
% insertion loss
IL_dB = -20 * log10(abs(squeeze(S(2,1,:))));
% coupling factor
CF_dB = -20 * log10(abs(squeeze(S(3,1,:))));
% isolation
I_dB = -20 * log10(abs(squeeze(S(4,1,:))));
% directivity
D_dB = -20 * log10(abs(squeeze(S(4,1,:) ./ S(3,1,:))));
figure
plot( f, [IL_dB CF_dB I_dB D_dB] );
legend( {'insertion loss','coupling factor','isolation','directivity'} );
title( ['performance of the coupler for a termination resistance of R=' num2str(R)] );
grid on
smithchart
S11 = squeeze(S(1,1,:));
plot( real(S11), imag(S11) );
legend( 'S_{11}' );
title( ['performance of the coupler for a termination resistance of R=' num2str(R)] );
axis( [-1 1 -1 1] );
function smithchart
% smith chart
figure
if exist( 'smith', 'file' )
% smith chart
% www.ece.rutgers.edu/~orfanidi/ewa
% or cmt toolbox from git.ate.uni-duisburg.de
smith
else
% poor man smith chart
color = [.6 .6 .6];
h = plot( sin(0:0.01:2*pi), cos(0:0.01:2*pi), 'Color', color );
hg = hggroup;
set( h,'Parent',hg );
hold on
plot( hg, 0.25+0.75*sin(0:0.01:2*pi), 0.75*cos(0:0.01:2*pi), 'Color', color );
plot( hg, 0.5+0.5*sin(0:0.01:2*pi), 0.5*cos(0:0.01:2*pi), 'Color', color );
plot( hg, 0.75+0.25*sin(0:0.01:2*pi), 0.25*cos(0:0.01:2*pi), 'Color', color );
plot( hg, [-1 1], [0 0], 'Color', color );
axis equal
axis off
end
function s = y2s(y, ZL)
% S = y2s(Y, ZL)
%
% Admittance to Scattering transformation
% for square matrices at multiple frequencies
%
% ZL defaults to 50 Ohm
if nargin < 2
ZL = 50;
end
if size(size(y),2) > 2
nF = size(y,3);
else
nF = 1;
end
I = diag(ones(1, size(y,2)))/ZL;
for i=1:nF
%s(:,:,i) = inv(I+y(:,:,i)) * (I-y(:,:,i));
s(:,:,i) = (I+y(:,:,i)) \ (I-y(:,:,i));
end
|