File: Circ_Waveguide.m

package info (click to toggle)
openems 0.0.35%2Bgit20190103.6a75e98%2Bdfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,424 kB
  • sloc: cpp: 40,407; python: 2,028; yacc: 580; makefile: 458; lex: 350; sh: 176; ruby: 19
file content (207 lines) | stat: -rw-r--r-- 6,689 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
%
% EXAMPLE / waveguide / circular waveguide
%
% This example demonstrates how to:
%  - setup a circular waveguide
%  - use analytic functions for waveguide excitations and voltage/current
%  calculations
% 
%
% Tested with
%  - Matlab 2009b
%  - openEMS v0.0.17
%
% (C) 2010 Thorsten Liebig <thorsten.liebig@uni-due.de>

close all
clear
clc

%% switches & options...
postprocessing_only = 0;
use_pml = 0;            % use pml boundaries instead of mur
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];

%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
numTS = 1e5;            %number of timesteps
length = 1000;          %length of the waveguide
unit = 1e-3;            %drawing unit used
rad  = 300;             %radius of the circular waveguide
mesh_res = [10 10 15];  %desired mesh resolution

%excitation
f0 = 350e6;             %center frequency
f0_BW = 25e6;           %bandwidth: 10dB cut-off frequency

physical_constants

%% TE11 mode definitions (Pozar 3rd edition)
p11 = 1.841;
kc = p11 / rad /unit;
k = 2*pi*f0/C0;
fc = C0*kc/2/pi;
beta = sqrt(k^2 - kc^2);
n_eff = (beta/k);

kc = kc*unit; %functions must be defined in drawing units
func_Er = [ num2str(-1/kc^2) '/rho*cos(a)*j1('  num2str(kc) '*rho)'];
func_Ea = [ num2str(1/kc) '*sin(a)*0.5*(j0('  num2str(kc) '*rho)-jn(2,'  num2str(kc) '*rho))'];
func_Ex = ['(' func_Er '*cos(a) - ' func_Ea '*sin(a) )*(rho<' num2str(rad) ')'];
func_Ey = ['(' func_Er '*sin(a) + ' func_Ea '*cos(a) )*(rho<' num2str(rad) ')'];

func_Ha = [ num2str(-1/kc^2,'%14.13f') '/rho*cos(a)*j1('  num2str(kc,'%14.13f') '*rho)'];
func_Hr = [ '-1*' num2str(1/kc,'%14.13f') '*sin(a)*0.5*(j0('  num2str(kc,'%14.13f') '*rho)-jn(2,'  num2str(kc,'%14.13f') '*rho))'];
func_Hx = ['(' func_Hr '*cos(a) - ' func_Ha '*sin(a) )*(rho<' num2str(rad) ')'];
func_Hy = ['(' func_Hr '*sin(a) + ' func_Ha '*cos(a) )*(rho<' num2str(rad) ')'];

%% define files and path %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Sim_Path = 'tmp';
Sim_CSX = 'Circ_WG.xml';

if (postprocessing_only==0)
    [status, message, messageid] = rmdir(Sim_Path,'s');
    [status, message, messageid] = mkdir(Sim_Path);
end

%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD(numTS,1e-6,'OverSampling',5);
FDTD = SetGaussExcite(FDTD,f0,f0_BW);
BC = {'PEC','PEC','PEC','PEC','PEC','MUR'};
if (use_pml>0)
    BC = {'PEC','PEC','PEC','PEC','PEC','PML_8'};
end
FDTD = SetBoundaryCond(FDTD,BC,'MUR_PhaseVelocity',C0 / n_eff);

%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = -mesh_res(1)/2-rad:mesh_res(1):rad+mesh_res(1)/2;
mesh.y = -mesh_res(2)/2-rad:mesh_res(2):rad+mesh_res(2)/2;
mesh.z = 0 : mesh_res(3) : length;
CSX = DefineRectGrid(CSX, 1e-3,mesh);

start = [0,0,0];
stop = [0,0,length];

%%% fill everything with copper, priority 0
CSX = AddMetal(CSX,'copper');
% CSX = SetMaterialProperty(CSX,'copper','Kappa',56e6);
CSX = AddBox(CSX,'copper',0,[mesh.x(1) mesh.y(1) mesh.z(1)],[mesh.x(end) mesh.y(end) mesh.z(end)]);

%%% cut out an air cylinder as circular waveguide... priority 5
CSX = AddMaterial(CSX,'air');
CSX = SetMaterialProperty(CSX,'air','Epsilon',1);
CSX = AddCylinder(CSX,'air', 5 ,start,stop,rad);

CSX = AddExcitation(CSX,'excite',0,[1 1 0]);
weight{1} = func_Ex;
weight{2} = func_Ey;
weight{3} = 0;
CSX = SetExcitationWeight(CSX, 'excite', weight );
CSX = AddCylinder(CSX,'excite', 5 ,[0 0 -0.1],[0 0 0.1],rad);
 
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et_','SubSampling','2,2,2','FileType',0,'DumpMode',2);
start = [mesh.x(1) , 0 , mesh.z(1)];
stop = [mesh.x(end), 0 , mesh.z(end)];
CSX = AddBox(CSX,'Et_',0 , start,stop);

CSX = AddDump(CSX,'Ht_','SubSampling','2,2,2','DumpType',1,'FileType',0,'DumpMode',2);
CSX = AddBox(CSX,'Ht_',0,start,stop);

%% define voltage calc boxes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%voltage calc
start = [mesh.x(1)   mesh.y(1)   mesh.z(10)];
stop  = [mesh.x(end) mesh.y(end) mesh.z(10)];
CSX = AddProbe(CSX, 'ut1', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0});
CSX = AddBox(CSX,  'ut1',  0 ,start,stop);
CSX = AddProbe(CSX,'it1', 11, 1, [], 'ModeFunction',{func_Hx,func_Hy,0});
CSX = AddBox(CSX,'it1', 0 ,start,stop);
    
start = [mesh.x(1)   mesh.y(1)   mesh.z(end-10)];
stop  = [mesh.x(end) mesh.y(end) mesh.z(end-10)];
CSX = AddProbe(CSX, 'ut2', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0});
CSX = AddBox(CSX,  'ut2',  0 ,start,stop);
CSX = AddProbe(CSX,'it2', 11, 1, [], 'ModeFunction',{func_Hx,func_Hy,0});
CSX = AddBox(CSX,'it2', 0 ,start,stop);

port_dist = mesh.z(end-10) - mesh.z(10);

%% Write openEMS
if (postprocessing_only==0)
    WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);

    RunOpenEMS(Sim_Path, Sim_CSX, openEMS_opts);
end

%% do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
freq = linspace(f0-f0_BW,f0+f0_BW,201);
U = ReadUI({'ut1','ut2'},[Sim_Path '/'],freq);
I = ReadUI({'it1','it2'},[Sim_Path '/'],freq);
Exc = ReadUI('et',Sim_Path,freq);

k = 2*pi*freq/C0;
kc = p11 / rad /unit;
beta = sqrt(k.^2 - kc^2);

ZL_a = Z0*k./beta ;

uf1 = U.FD{1}.val./Exc.FD{1}.val;
uf2 = U.FD{2}.val./Exc.FD{1}.val;
if1 = I.FD{1}.val./Exc.FD{1}.val;
if2 = I.FD{2}.val./Exc.FD{1}.val;

uf1_inc = 0.5 * ( uf1 + if1 .* ZL_a );
if1_inc = 0.5 * ( if1 + uf1 ./ ZL_a );
uf2_inc = 0.5 * ( uf2 + if2 .* ZL_a );
if2_inc = 0.5 * ( if2 + uf2 ./ ZL_a );

uf1_ref = uf1 - uf1_inc;
if1_ref = if1 - if1_inc;
uf2_ref = uf2 - uf2_inc;
if2_ref = if2 - if2_inc;

% plot s-parameter
figure
s11 = uf1_ref./uf1_inc;
s21 = uf2_inc./uf1_inc;
plot(freq,20*log10(abs(s11)),'Linewidth',2);
xlim([freq(1) freq(end)]);
xlabel('frequency (Hz)')
ylabel('s-para (dB)');
% ylim([-40 5]);
grid on;
hold on;
plot(freq,20*log10(abs(s21)),'r','Linewidth',2);
legend('s11','s21','Location','SouthEast');

% plot line-impedance comparison
figure()
ZL = uf1./if1;
plot(freq,real(ZL),'Linewidth',2);
xlim([freq(1) freq(end)]);
xlabel('frequency (Hz)')
ylabel('line-impedance (\Omega)');
grid on;
hold on;
plot(freq,imag(ZL),'r--','Linewidth',2);
plot(freq,ZL_a,'g-.','Linewidth',2);
legend('\Re\{ZL\}','\Im\{ZL\}','ZL-analytic','Location','Best');

% beta compare
figure()
da = angle(uf1_inc)-angle(uf2_inc);
da = mod(da,2*pi);
beta_12 = (da)/port_dist/unit;
plot(freq,beta_12,'Linewidth',2);
xlim([freq(1) freq(end)]);
xlabel('frequency (Hz)');
ylabel('\beta (m^{-1})');
grid on;
hold on;
plot(freq,beta,'g--','Linewidth',2);
legend('\beta-FDTD','\beta-analytic','Location','Best');

%% visualize electric & magnetic fields
disp('you will find vtk dump files in the simulation folder (tmp/)')
disp('use paraview to visulaize them');