File: Rect_Waveguide.m

package info (click to toggle)
openems 0.0.35%2Bgit20190103.6a75e98%2Bdfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,424 kB
  • sloc: cpp: 40,407; python: 2,028; yacc: 580; makefile: 458; lex: 350; sh: 176; ruby: 19
file content (240 lines) | stat: -rw-r--r-- 7,692 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
%
% EXAMPLE / waveguide / Rect_Waveguide
%
% This example demonstrates:
%  - waveguide mode excitation
%  - waveguide mode matching
%  - pml absorbing boundaries
% 
%
% Tested with
%  - Matlab 2009b
%  - openEMS v0.0.17
%
% (C) 2010 Thorsten Liebig <thorsten.liebig@gmx.de>

close all
clear
clc

%% switches
postproc_only = 0;

%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
physical_constants;
unit = 1e-3; %drawing unit in mm
numTS = 50000; %max. number of timesteps

% waveguide dimensions
length = 1000;
a = 1000;   %waveguide width
b = 600;    %waveguide heigth

%waveguide TE-mode definition
m = 1;
n = 0;

mesh_res = [10 10 10];

%% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%
f_start =  175e6;
f_stop  =  500e6;

% dump special frequencies to vtk, use paraview (www.paraview.org) to
% animate this dumps over phase
vtk_dump_freq = [200e6 300e6 500e6];

freq = linspace(f_start,f_stop,201);

k = 2*pi*freq/c0;
kc = sqrt((m*pi/a/unit)^2 + (n*pi/b/unit)^2);
fc = c0*kc/2/pi;          %cut-off frequency
beta = sqrt(k.^2 - kc^2); %waveguide phase-constant
ZL_a = k * Z0 ./ beta;    %analytic waveguide impedance

disp([' Cutoff frequencies for this mode and wavguide is: ' num2str(fc/1e6) ' MHz']);

if (f_start<fc)
    warning('openEMS:example','f_start is smaller than the cutoff-frequency, this may result in a long simulation... ');
end

%% mode functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% by David M. Pozar, Microwave Engineering, third edition, page 113
func_Ex = [num2str( n/b/unit) '*cos(' num2str(m*pi/a) '*x)*sin('  num2str(n*pi/b) '*y)'];
func_Ey = [num2str(-m/a/unit) '*sin(' num2str(m*pi/a) '*x)*cos('  num2str(n*pi/b) '*y)'];

func_Hx = [num2str(m/a/unit) '*sin(' num2str(m*pi/a) '*x)*cos('  num2str(n*pi/b) '*y)'];
func_Hy = [num2str(n/b/unit) '*cos(' num2str(m*pi/a) '*x)*sin('  num2str(n*pi/b) '*y)'];

%% define and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
% openEMS_opts = [openEMS_opts ' --engine=basic'];

Settings = [];
Settings.LogFile = 'openEMS.log';

Sim_Path = 'tmp';
Sim_CSX = 'rect_wg.xml';

if (postproc_only==0)
    [status, message, messageid] = rmdir(Sim_Path,'s');
    [status, message, messageid] = mkdir(Sim_Path);
end

%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD(numTS,1e-5,'OverSampling',6);
FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start));
BC = [0 0 0 0 0 3];
FDTD = SetBoundaryCond(FDTD,BC);

%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = SmoothMeshLines([0 a], mesh_res(1));
mesh.y = SmoothMeshLines([0 b], mesh_res(2));
mesh.z = SmoothMeshLines([0 length], mesh_res(3));
CSX = DefineRectGrid(CSX, unit,mesh);

%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
start=[mesh.x(1)   mesh.y(1)   mesh.z(1) ];
stop =[mesh.x(end) mesh.y(end) mesh.z(1) ];
CSX = AddExcitation(CSX,'excite',0,[1 1 0]);
weight{1} = func_Ex;
weight{2} = func_Ey;
weight{3} = 0;
CSX = SetExcitationWeight(CSX,'excite',weight);
CSX = AddBox(CSX,'excite',0 ,start,stop);

%% voltage and current definitions using the mode matching probes %%%%%%%%%
%port 1
start = [mesh.x(1)   mesh.y(1)   mesh.z(15)];
stop  = [mesh.x(end) mesh.y(end) mesh.z(15)];
CSX = AddProbe(CSX, 'ut1', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0});
CSX = AddBox(CSX,  'ut1',  0 ,start,stop);
CSX = AddProbe(CSX,'it1', 11, 1, [], 'ModeFunction',{func_Hx,func_Hy,0});
CSX = AddBox(CSX,'it1', 0 ,start,stop);

%port 2
start = [mesh.x(1)   mesh.y(1)   mesh.z(end-15)];
stop  = [mesh.x(end) mesh.y(end) mesh.z(end-15)];
CSX = AddProbe(CSX, 'ut2', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0});
CSX = AddBox(CSX,  'ut2',  0 ,start,stop);
CSX = AddProbe(CSX,'it2', 11, 1, [], 'ModeFunction',{func_Hx,func_Hy,0});
CSX = AddBox(CSX,'it2', 0 ,start,stop);

port_dist = mesh.z(end-15) - mesh.z(15);
 
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et','FileType',1,'SubSampling','4,4,2');
start = [mesh.x(1)   mesh.y(1)   mesh.z(1)];
stop  = [mesh.x(end) mesh.y(end) mesh.z(end)];
CSX = AddBox(CSX,'Et',0 , start,stop);

CSX = AddDump(CSX,'Ht','DumpType',1,'FileType',1,'SubSampling','4,4,2');
CSX = AddBox(CSX,'Ht',0,start,stop);

%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (postproc_only==0)
    WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);

    RunOpenEMS(Sim_Path, Sim_CSX, openEMS_opts, Settings)
end

%% postproc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
U = ReadUI({'ut1','ut2'},[Sim_Path '/'],freq);
I = ReadUI({'it1','it2'},[Sim_Path '/'],freq);
Exc = ReadUI('et',Sim_Path,freq);

uf1 = U.FD{1}.val./Exc.FD{1}.val;
uf2 = U.FD{2}.val./Exc.FD{1}.val;
if1 = I.FD{1}.val./Exc.FD{1}.val;
if2 = I.FD{2}.val./Exc.FD{1}.val;

uf1_inc = 0.5 * ( uf1 + if1 .* ZL_a );
if1_inc = 0.5 * ( if1 + uf1 ./ ZL_a );
uf2_inc = 0.5 * ( uf2 + if2 .* ZL_a );
if2_inc = 0.5 * ( if2 + uf2 ./ ZL_a );

uf1_ref = uf1 - uf1_inc;
if1_ref = if1 - if1_inc;
uf2_ref = uf2 - uf2_inc;
if2_ref = if2 - if2_inc;

%% plot s-parameter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure
s11 = uf1_ref./uf1_inc;
s21 = uf2_inc./uf1_inc;
plot(freq,20*log10(abs(s11)),'Linewidth',2);
xlim([freq(1) freq(end)]);
% ylim([-40 5]);
grid on;
hold on;
plot(freq,20*log10(abs(s21)),'r','Linewidth',2);
legend('s11','s21','Location','SouthEast');
ylabel('s-para (dB)');
xlabel('freq (Hz)');

%% compare analytic and numerical wave-impedance %%%%%%%%%%%%%%%%%%%%%%%%%%
ZL = uf1./if1;
figure()
plot(freq,real(ZL),'Linewidth',2);
hold on;
grid on;
plot(freq,imag(ZL),'r--','Linewidth',2);
plot(freq,ZL_a,'g-.','Linewidth',2);
ylabel('ZL (\Omega)');
xlabel('freq (Hz)');
xlim([freq(1) freq(end)]);
legend('\Re(Z_L)','\Im(Z_L)','Z_L analytic','Location','Best');

%% beta compare
figure()
da = unwrap(angle(uf1_inc./uf2_inc)) ;
% da = mod(da,2*pi);
beta_12 = (da)/port_dist/unit;
plot(freq,beta_12,'Linewidth',2);
xlim([freq(1) freq(end)]);
xlabel('frequency (Hz)');
ylabel('\beta (m^{-1})');
grid on;
hold on;
plot(freq,beta,'g--','Linewidth',2);
legend('\beta-FDTD','\beta-analytic','Location','Best');

%% Plot the field dumps %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dump_file = [Sim_Path '/Et.h5'];
figure()
PlotArgs.slice = {a/2*unit b/2*unit 0};
PlotArgs.pauseTime=0.01;
PlotArgs.component=0;
PlotArgs.Limit = 'auto';
PlotHDF5FieldData(dump_file, PlotArgs)

%% dump frequency to vtk %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cleanup and create dump folder
vtk_path = [Sim_Path '/vtk'];
[status, message, messageid] = rmdir(vtk_path,'s');
[status, message, messageid] = mkdir(vtk_path);

disp('Dumping to vtk files... this may take a minute...')
% define interpolation mesh
mesh_interp{1}=mesh.x * unit;
mesh_interp{2}=b/2 * unit;
mesh_interp{3}=mesh.z * unit;
[field mesh_FD] = ReadHDF5Dump(dump_file,'Interpolation',mesh_interp,'Frequency',vtk_dump_freq);

% dump animated phase to vtk
for n=1:numel(vtk_dump_freq)   
    phase = linspace(0,360,21);
    phase = phase(1:end-1);
    for ph = phase
        filename = [vtk_path '/E_xz_f=' num2str(vtk_dump_freq(n)) '_p' num2str(ph) '.vtk'];
        Dump2VTK(filename,real(field.FD.values{n}.*exp(1j*ph/180*pi)),mesh_FD,'E-Field');
    end
    
    filename = [vtk_path '/E_xz_f=' num2str(vtk_dump_freq(n)) '_mag.vtk'];
    Dump2VTK(filename,abs(field.FD.values{n}),mesh_FD,'E-Field');
end

disp('done... you can open and visualize the vtk-files using Paraview (www.paraview.org)!')