File: operator_ext_upml.cpp

package info (click to toggle)
openems 0.0.35+dfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 6,288 kB
  • sloc: cpp: 40,259; yacc: 580; lex: 350; makefile: 258; sh: 169; ruby: 19
file content (478 lines) | stat: -rw-r--r-- 15,529 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/*
*	Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
*	This program is free software: you can redistribute it and/or modify
*	it under the terms of the GNU General Public License as published by
*	the Free Software Foundation, either version 3 of the License, or
*	(at your option) any later version.
*
*	This program is distributed in the hope that it will be useful,
*	but WITHOUT ANY WARRANTY; without even the implied warranty of
*	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*	GNU General Public License for more details.
*
*	You should have received a copy of the GNU General Public License
*	along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "operator_ext_upml.h"
#include "FDTD/operator_cylindermultigrid.h"
#include "engine_ext_upml.h"
#include "tools/array_ops.h"
#include "fparser.hh"

using namespace std;

Operator_Ext_UPML::Operator_Ext_UPML(Operator* op) : Operator_Extension(op)
{
	m_GradingFunction = new FunctionParser();
	//default grading function
	SetGradingFunction(" -log(1e-6)*log(2.5)/(2*dl*Z*(pow(2.5,W/dl)-1)) * pow(2.5, D/dl) ");

	for (int n=0; n<6; ++n)
	{
		m_BC[n]=0;
		m_Size[n]=0;
	}
	for (int n=0; n<3; ++n)
	{
		m_StartPos[n]=0;
		m_numLines[n]=0;
	}

	vv = NULL;
	vvfo = NULL;
	vvfn = NULL;
	ii = NULL;
	iifo = NULL;
	iifn = NULL;
}

Operator_Ext_UPML::~Operator_Ext_UPML()
{
	delete m_GradingFunction;
	m_GradingFunction = NULL;
	DeleteOp();
}

void Operator_Ext_UPML::SetBoundaryCondition(const int* BCs, const unsigned int size[6])
{
	for (int n=0; n<6; ++n)
	{
		m_BC[n]=BCs[n];
		m_Size[n]=size[n];
	}
}

void Operator_Ext_UPML::SetRange(const unsigned int start[3], const unsigned int stop[3])
{
	for (int n=0; n<3; ++n)
	{
		m_StartPos[n]=start[n];
		m_numLines[n]=stop[n]-start[n]+1;
	}
}

bool Operator_Ext_UPML::Create_UPML(Operator* op, const int ui_BC[6], const unsigned int ui_size[6], string gradFunc)
{
	int BC[6]={ui_BC[0],ui_BC[1],ui_BC[2],ui_BC[3],ui_BC[4],ui_BC[5]};
	unsigned int size[6]={ui_size[0],ui_size[1],ui_size[2],ui_size[3],ui_size[4],ui_size[5]};

	//check if mesh is large enough to support the pml
	for (int n=0; n<3; ++n)
		if ( (size[2*n]*(BC[2*n]==3)+size[2*n+1]*(BC[2*n+1]==3)) >= op->GetNumberOfLines(n,true) )
		{
			cerr << "Operator_Ext_UPML::Create_UPML: Warning: Not enough lines in direction: " << n << ", resetting to PEC" << endl;
			BC[2*n]=0;
			size[2*n]=0;
			BC[2*n+1]=0;
			size[2*n+1]=0;
		}

	//check cylindrical coord compatiblility
	Operator_Cylinder* op_cyl = dynamic_cast<Operator_Cylinder*>(op);
	if (op_cyl)
	{
		if ((BC[0]==3) && (op_cyl->GetClosedAlpha() || op_cyl->GetR0Included()))
		{
			BC[0]=0;
			size[0]=0;
			cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in r-min direction is not possible, resetting to PEC..." << endl;
		}
		if ( (BC[2]==3) && (op_cyl->GetClosedAlpha()) )
		{
			BC[2]=0;
			size[2]=0;
			cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in alpha-min direction is not possible, resetting to PEC..." << endl;
		}
		if ( (BC[3]==3) && (op_cyl->GetClosedAlpha()) )
		{
			BC[3]=0;
			size[3]=0;
			cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in alpha-max direction is not possible, resetting to PEC..." << endl;
		}
	}

	//check cylindrical coord compatiblility
	if (dynamic_cast<Operator_CylinderMultiGrid*>(op))
	{
		if (BC[2]==3)
		{
			BC[2]=0;
			size[2]=0;
			cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in alpha direction is not possible for a cylindrical multi-grid, resetting to PEC..." << endl;
		}
		if (BC[3]==3)
		{
			BC[3]=0;
			size[3]=0;
			cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in alpha direction is not possible for a cylindrical multi-grid, resetting to PEC..." << endl;
		}
	}


	Operator_Ext_UPML* op_ext_upml=NULL;
	unsigned int start[3]={0 ,0 ,0};
	unsigned int stop[3] ={op->GetNumberOfLines(0,true)-1,op->GetNumberOfLines(1,true)-1,op->GetNumberOfLines(2,true)-1};

	//create a pml in x-direction over the full width of yz-space
	if (BC[0]==3)
	{
		op_ext_upml = new Operator_Ext_UPML(op);
		op_ext_upml->SetGradingFunction(gradFunc);
		start[0]=0;
		stop[0] =size[0];
		op_ext_upml->SetBoundaryCondition(BC, size);
		op_ext_upml->SetRange(start,stop);
		op->AddExtension(op_ext_upml);
	}
	if (BC[1]==3)
	{
		op_ext_upml = new Operator_Ext_UPML(op);
		op_ext_upml->SetGradingFunction(gradFunc);
		start[0]=op->GetNumberOfLines(0,true)-1-size[1];
		stop[0] =op->GetNumberOfLines(0,true)-1;
		op_ext_upml->SetBoundaryCondition(BC, size);
		op_ext_upml->SetRange(start,stop);
		op->AddExtension(op_ext_upml);
	}

	//create a pml in y-direction over the xz-space (if a pml in x-direction already exists, skip that corner regions)
	start[0]=(size[0]+1)*(BC[0]==3);
	stop[0] =op->GetNumberOfLines(0,true)-1-(size[0]+1)*(BC[1]==3);

	if (BC[2]==3)
	{
		op_ext_upml = new Operator_Ext_UPML(op);
		op_ext_upml->SetGradingFunction(gradFunc);
		start[1]=0;
		stop[1] =size[2];
		op_ext_upml->SetBoundaryCondition(BC, size);
		op_ext_upml->SetRange(start,stop);
		op->AddExtension(op_ext_upml);
	}
	if (BC[3]==3)
	{
		op_ext_upml = new Operator_Ext_UPML(op);
		op_ext_upml->SetGradingFunction(gradFunc);
		start[1]=op->GetNumberOfLines(1,true)-1-size[3];
		stop[1] =op->GetNumberOfLines(1,true)-1;
		op_ext_upml->SetBoundaryCondition(BC, size);
		op_ext_upml->SetRange(start,stop);
		op->AddExtension(op_ext_upml);
	}

	//create a pml in z-direction over the xy-space (if a pml in x- and/or y-direction already exists, skip that corner/edge regions)
	start[1]=(size[2]+1)*(BC[2]==3);
	stop[1] =op->GetNumberOfLines(1,true)-1-(size[3]+1)*(BC[3]==3);

	//exclude x-lines that does not belong to the base multi-grid operator;
	Operator_CylinderMultiGrid* op_cyl_MG = dynamic_cast<Operator_CylinderMultiGrid*>(op);
	if (op_cyl_MG)
		start[0] = op_cyl_MG->GetSplitPos()-1;

	if (BC[4]==3)
	{
		op_ext_upml = new Operator_Ext_UPML(op);
		op_ext_upml->SetGradingFunction(gradFunc);
		start[2]=0;
		stop[2] =size[4];
		op_ext_upml->SetBoundaryCondition(BC, size);
		op_ext_upml->SetRange(start,stop);
		op->AddExtension(op_ext_upml);
	}
	if (BC[5]==3)
	{
		op_ext_upml = new Operator_Ext_UPML(op);
		op_ext_upml->SetGradingFunction(gradFunc);
		start[2]=op->GetNumberOfLines(2,true)-1-size[5];
		stop[2] =op->GetNumberOfLines(2,true)-1;
		op_ext_upml->SetBoundaryCondition(BC, size);
		op_ext_upml->SetRange(start,stop);
		op->AddExtension(op_ext_upml);
	}

	BC[1]=0;
	size[1]=0;
	//create pml extensions (in z-direction only) for child operators in cylindrical multigrid operators
	while (op_cyl_MG)
	{
		Operator_Cylinder* op_child = op_cyl_MG->GetInnerOperator();
		op_cyl_MG = dynamic_cast<Operator_CylinderMultiGrid*>(op_child);
		for (int n=0; n<2; ++n)
		{
			start[n]=0;
			stop[n]=op_child->GetNumberOfLines(n,true)-1;
		}

		if (op_cyl_MG)
			start[0] = op_cyl_MG->GetSplitPos()-1;

		if (BC[4]==3)
		{
			op_ext_upml = new Operator_Ext_UPML(op_child);
			op_ext_upml->SetGradingFunction(gradFunc);
			start[2]=0;
			stop[2] =size[4];
			op_ext_upml->SetBoundaryCondition(BC, size);
			op_ext_upml->SetRange(start,stop);
			op_child->AddExtension(op_ext_upml);
		}
		if (BC[5]==3)
		{
			op_ext_upml = new Operator_Ext_UPML(op_child);
			op_ext_upml->SetGradingFunction(gradFunc);
			start[2]=op->GetNumberOfLines(2,true)-1-size[5];
			stop[2] =op->GetNumberOfLines(2,true)-1;
			op_ext_upml->SetBoundaryCondition(BC, size);
			op_ext_upml->SetRange(start,stop);
			op_child->AddExtension(op_ext_upml);
		}
	}

	return true;
}


void Operator_Ext_UPML::DeleteOp()
{
	Delete_N_3DArray<FDTD_FLOAT>(vv,m_numLines);
	vv = NULL;
	Delete_N_3DArray<FDTD_FLOAT>(vvfo,m_numLines);
	vvfo = NULL;
	Delete_N_3DArray<FDTD_FLOAT>(vvfn,m_numLines);
	vvfn = NULL;
	Delete_N_3DArray<FDTD_FLOAT>(ii,m_numLines);
	ii = NULL;
	Delete_N_3DArray<FDTD_FLOAT>(iifo,m_numLines);
	iifo = NULL;
	Delete_N_3DArray<FDTD_FLOAT>(iifn,m_numLines);
	iifn = NULL;
}


bool Operator_Ext_UPML::SetGradingFunction(string func)
{
	if (func.empty())
		return true;

	m_GradFunc = func;
	int res = m_GradingFunction->Parse(m_GradFunc.c_str(), "D,dl,W,Z,N");
	if (res < 0) return true;

	cerr << "Operator_Ext_UPML::SetGradingFunction: Warning, an error occurred parsing the pml grading function (see below) ..." << endl;
	cerr << func << "\n" << string(res, ' ') << "^\n" << m_GradingFunction->ErrorMsg() << "\n";
	return false;
}

void Operator_Ext_UPML::CalcGradingKappa(int ny, unsigned int pos[3], double Zm, double kappa_v[3], double kappa_i[3])
{
	double depth=0;
	double width=0;
	for (int n=0; n<3; ++n)
	{
		if ((pos[n] <= m_Size[2*n]) && (m_BC[2*n]==3))  //lower pml in n-dir
		{
			width = (m_Op->GetDiscLine(n,m_Size[2*n]) - m_Op->GetDiscLine(n,0))*m_Op->GetGridDelta();
			depth = width - (m_Op->GetDiscLine(n,pos[n]) - m_Op->GetDiscLine(n,0))*m_Op->GetGridDelta();

			if ((m_Op_Cyl) && (n==1))
			{
				width *= m_Op_Cyl->GetDiscLine(0,pos[0]);
				depth *= m_Op_Cyl->GetDiscLine(0,pos[0]);
			}

			if (n==ny)
				depth-=m_Op->GetEdgeLength(n,pos)/2;
			double vars[5] = {depth, width/m_Size[2*n], width, Zm, (double)m_Size[2*n]};
			if (depth>0)
				kappa_v[n] = m_GradingFunction->Eval(vars);
			else
				kappa_v[n]=0;
			if (n==ny)
				depth+=m_Op->GetEdgeLength(n,pos)/2;

			if (n!=ny)
				depth-=m_Op->GetEdgeLength(n,pos)/2;
			if (depth<0)
				depth=0;
			vars[0]=depth;
			if (depth>0)
				kappa_i[n] = m_GradingFunction->Eval(vars);
			else
				kappa_i[n] = 0;
		}
		else if ((pos[n] >= m_Op->GetNumberOfLines(n,true) -1 -m_Size[2*n+1]) && (m_BC[2*n+1]==3))  //upper pml in n-dir
		{
			width = (m_Op->GetDiscLine(n,m_Op->GetNumberOfLines(n,true)-1) - m_Op->GetDiscLine(n,m_Op->GetNumberOfLines(n,true)-m_Size[2*n+1]-1))*m_Op->GetGridDelta();
			depth = width - (m_Op->GetDiscLine(n,m_Op->GetNumberOfLines(n,true)-1) - m_Op->GetDiscLine(n,pos[n]))*m_Op->GetGridDelta();

			if ((m_Op_Cyl) && (n==1))
			{
				width *= m_Op_Cyl->GetDiscLine(0,pos[0]);
				depth *= m_Op_Cyl->GetDiscLine(0,pos[0]);
			}

			if (n==ny)
				depth+=m_Op->GetEdgeLength(n,pos)/2;
			double vars[5] = {depth, width/(m_Size[2*n]), width, Zm, (double)m_Size[2*n]};
			if (depth>0)
				kappa_v[n] = m_GradingFunction->Eval(vars);
			else
				kappa_v[n]=0;
			if (n==ny)
				depth-=m_Op->GetEdgeLength(n,pos)/2;

			if (n!=ny)
				depth+=m_Op->GetEdgeLength(n,pos)/2;
			if (depth>width)
				depth=0;
			vars[0]=depth;
			if (depth>0)
				kappa_i[n] = m_GradingFunction->Eval(vars);
			else
				kappa_i[n]=0;
		}
		else
		{
			kappa_v[n] = 0;
			kappa_i[n] = 0;
		}
	}
}

bool Operator_Ext_UPML::BuildExtension()
{
	/*Calculate the upml coefficients as defined in:
	  Allen Taflove, computational electrodynamics - the FDTD method, third edition, chapter 7.8, pages 297-300
	  - modified by Thorsten Liebig to match the equivalent circuit (EC) FDTD method
	  - kappa is used for conductivities (instead of sigma)
	*/
	if (m_Op==NULL)
		return false;

	DeleteOp();
	vv = Create_N_3DArray<FDTD_FLOAT>(m_numLines);
	vvfo = Create_N_3DArray<FDTD_FLOAT>(m_numLines);
	vvfn = Create_N_3DArray<FDTD_FLOAT>(m_numLines);
	ii = Create_N_3DArray<FDTD_FLOAT>(m_numLines);
	iifo = Create_N_3DArray<FDTD_FLOAT>(m_numLines);
	iifn = Create_N_3DArray<FDTD_FLOAT>(m_numLines);

	unsigned int pos[3];
	unsigned int loc_pos[3];
	int nP,nPP;
	double kappa_v[3]={0,0,0};
	double kappa_i[3]={0,0,0};
	double eff_Mat[4];
	double dT = m_Op->GetTimestep();

	for (loc_pos[0]=0; loc_pos[0]<m_numLines[0]; ++loc_pos[0])
	{
		pos[0] = loc_pos[0] + m_StartPos[0];
		for (loc_pos[1]=0; loc_pos[1]<m_numLines[1]; ++loc_pos[1])
		{
			pos[1] = loc_pos[1] + m_StartPos[1];
			vector<CSPrimitives*> vPrims = m_Op->GetPrimitivesBoundBox(pos[0], pos[1], -1, CSProperties::MATERIAL);
			for (loc_pos[2]=0; loc_pos[2]<m_numLines[2]; ++loc_pos[2])
			{
				pos[2] = loc_pos[2] + m_StartPos[2];
				for (int n=0; n<3; ++n)
				{
					m_Op->Calc_EffMatPos(n,pos,eff_Mat,vPrims);
					CalcGradingKappa(n, pos,__Z0__ ,kappa_v ,kappa_i);
					nP = (n+1)%3;
					nPP = (n+2)%3;
					if ((kappa_v[0]+kappa_v[1]+kappa_v[2])!=0)
					{
						//check if pos is on PEC
						if ( (m_Op->GetVV(n,pos[0],pos[1],pos[2]) + m_Op->GetVI(n,pos[0],pos[1],pos[2])) != 0 )
						{
							//modify the original operator to perform eq. (7.85) by the main engine (EC-FDTD: equation is multiplied by delta_n)
							//the engine extension will replace the original voltages with the "voltage flux" (volt*eps0) prior to the voltage updates
							//after the updates are done the extension will calculate the new voltages (see below) and place them back into the main field domain
							m_Op->SetVV(n,pos[0],pos[1],pos[2], (2*__EPS0__ - kappa_v[nP]*dT) / (2*__EPS0__ + kappa_v[nP]*dT) );
							m_Op->SetVI(n,pos[0],pos[1],pos[2], (2*__EPS0__*dT) / (2*__EPS0__ + kappa_v[nP]*dT) * m_Op->GetEdgeLength(n,pos) / m_Op->GetEdgeArea(n,pos) );


							//operators needed by eq. (7.88) to calculate new voltages from old voltages and old and new "voltage fluxes"
							GetVV(n,loc_pos)   = (2*__EPS0__ - kappa_v[nPP]*dT) / (2*__EPS0__ + kappa_v[nPP]*dT);
							GetVVFN(n,loc_pos) = (2*__EPS0__ + kappa_v[n]*dT)   / (2*__EPS0__ + kappa_v[nPP]*dT)/eff_Mat[0];
							GetVVFO(n,loc_pos) = (2*__EPS0__ - kappa_v[n]*dT)   / (2*__EPS0__ + kappa_v[nPP]*dT)/eff_Mat[0];
						}
					}
					else
					{
						//disable upml
						GetVV(n,loc_pos) = m_Op->GetVV(n,pos[0],pos[1],pos[2]);
						m_Op->SetVV(n,pos[0],pos[1],pos[2], 0 );
						GetVVFO(n,loc_pos) = 0;
						GetVVFN(n,loc_pos) = 1;
					}

					if ((kappa_i[0]+kappa_i[1]+kappa_i[2])!=0)
					{
						//check if pos is on PMC
						if ( (m_Op->GetII(n,pos[0],pos[1],pos[2]) + m_Op->GetIV(n,pos[0],pos[1],pos[2])) != 0 )
						{
							//modify the original operator to perform eq. (7.89) by the main engine (EC-FDTD: equation is multiplied by delta_n)
							//the engine extension will replace the original currents with the "current flux" (curr*mu0) prior to the current updates
							//after the updates are done the extension will calculate the new currents (see below) and place them back into the main field domain
							m_Op->SetII(n,pos[0],pos[1],pos[2], (2*__EPS0__ - kappa_i[nP]*dT) / (2*__EPS0__ + kappa_i[nP]*dT) );
							m_Op->SetIV(n,pos[0],pos[1],pos[2], (2*__EPS0__*dT) / (2*__EPS0__ + kappa_i[nP]*dT) * m_Op->GetEdgeLength(n,pos,true) / m_Op->GetEdgeArea(n,pos,true) );

							//operators needed by eq. (7.90) to calculate new currents from old currents and old and new "current fluxes"
							GetII(n,loc_pos)   = (2*__EPS0__ - kappa_i[nPP]*dT) / (2*__EPS0__ + kappa_i[nPP]*dT);
							GetIIFN(n,loc_pos) = (2*__EPS0__ + kappa_i[n]*dT)   / (2*__EPS0__ + kappa_i[nPP]*dT)/eff_Mat[2];
							GetIIFO(n,loc_pos) = (2*__EPS0__ - kappa_i[n]*dT)   / (2*__EPS0__ + kappa_i[nPP]*dT)/eff_Mat[2];
						}
					}
					else
					{
						//disable upml
						GetII(n,loc_pos) = m_Op->GetII(n,pos[0],pos[1],pos[2]);
						m_Op->SetII(n,pos[0],pos[1],pos[2], 0 );
						GetIIFO(n,loc_pos) = 0;
						GetIIFN(n,loc_pos) = 1;
					}
				}
			}
		}
	}
	return true;
}

Engine_Extension* Operator_Ext_UPML::CreateEngineExtention()
{
	Engine_Ext_UPML* eng_ext = new Engine_Ext_UPML(this);
	return eng_ext;
}

void Operator_Ext_UPML::ShowStat(ostream &ostr)  const
{
	Operator_Extension::ShowStat(ostr);

	ostr << " PML range\t\t: " << "[" << m_StartPos[0]<< "," << m_StartPos[1]<< "," << m_StartPos[2]<< "] to ["
	<<  m_StartPos[0]+m_numLines[0]-1 << "," << m_StartPos[1]+m_numLines[1]-1 << "," << m_StartPos[2]+m_numLines[2]-1 << "]" << endl;
	ostr << " Grading function\t: \"" << m_GradFunc << "\"" << endl;
}