File: AnalyzeNF2FF.m

package info (click to toggle)
openems 0.0.35+dfsg.1-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 6,288 kB
  • sloc: cpp: 40,259; yacc: 580; lex: 350; makefile: 258; sh: 169; ruby: 19
file content (231 lines) | stat: -rw-r--r-- 7,809 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
function [E_theta,E_phi,Prad,Dmax] = AnalyzeNF2FF( Sim_Path, nf2ff, f, theta, phi, r )
% [E_theta,E_phi,Prad,Dmax] = AnalyzeNF2FF( Sim_Path, filenames_E, filenames_H, f, theta, phi, r )
%
% calculates the farfield via a near field to far field transformation
%
% input:
%   Sim_Path:    simulation directory
%   nf2ff:       structure on filenames etc. as created by CreateNF2FFBox 
%   f:           frequency (Hz) for far field calculation
%   theta:       (degrees) vector of discrete theta values to calculate the far field for
%   phi:         (degrees) vector of discrete phi values to calculate the far field for
%   r:           (optional) Radius (m) at which the E-fields are calculated (default: 1 m)
%
% output:
%   E_theta:     E_theta(theta,phi); theta component of the electric field strength at radius r
%   E_phi:       E_phi(theta,phi);     phi component of the electric field strength at radius r
%   Prad:        time averaged radiated power
%   Dmax:        maximum directivity
%
% example:
%   see examples/NF2FF/infDipol.m
%
% See also CreateNF2FFBox
%
% (C) 2010 Sebastian Held <sebastian.held@gmx.de>
% (C) 2011 Thorsten Liebig <thorsten.liebig@gmx.de>

% check arguments
error( nargchk(6,6,nargin) );
if ~isscalar(f)
    error 'Currently only one frequency is supported. Call this function multiple times.'
end

warning('openEMS:AnalyzeNF2FF','This function is deprecated, use CalcNF2FF instead');

filenames_E = nf2ff.filenames_E;
filenames_H = nf2ff.filenames_H;

if (~isrow(nf2ff.directions))
    nf2ff.directions = nf2ff.directions';
end

% read time domain field data and transform into frequency domain
for n=find(nf2ff.directions==1)
    [Ef{n}, E_mesh{n}] = ReadHDF5Dump( [Sim_Path '/' filenames_E{n} '.h5'], 'Frequency', f );

    if (Ef{n}.FD.frequency(1) ~= f)
        error 'frequency mismach'
    end

    %clear out time domain data
    if isfield(Ef{n},'TD')
        Ef{n} = rmfield(Ef{n},'TD');
    end

    [Hf{n}, H_mesh{n}] = ReadHDF5Dump( [Sim_Path '/' filenames_H{n} '.h5'], 'Frequency', f );
    %clear out time domain data
    if isfield(Hf{n},'TD')
        Hf{n} = rmfield(Hf{n},'TD');
    end

    % reshape mesh into row vector
    mesh{n}.x = reshape( E_mesh{n}.lines{1}, 1, [] );
    mesh{n}.y = reshape( E_mesh{n}.lines{2}, 1, [] );
    mesh{n}.z = reshape( E_mesh{n}.lines{3}, 1, [] );
end

% create a normal vector for every plane
% FIXME!!! this is dependent upon the order of filenames_*
n = {};
for a=1:6
    temp = [(a<=2), ((a>=3)&&(a<=4)), (a>=5)];
    n{a} = temp - 2*mod(a,2)*temp;
end


physical_constants

k = 2*pi*f/c0;
center = [0 0 0];
Umax = 0;

phi_idx = 0;
for phi_deg_aufpunkt = phi
    phi_rad_aufpunkt = phi_deg_aufpunkt/180*pi; % radiant
    phi_idx = phi_idx + 1;
    
    theta_idx = 0;
    for theta_deg_aufpunkt = theta
        theta_rad_aufpunkt = theta_deg_aufpunkt/180*pi; % radiant
        theta_idx = theta_idx + 1;

        N_theta = 0;
        N_phi = 0;
        L_theta = 0;
        L_phi = 0;
        for a=find(nf2ff.directions==1)
            [N_theta_,N_phi_,L_theta_,L_phi_] = process_plane( k, n{a}, center, mesh{a}, Ef{a}.FD.values{1}, Hf{a}.FD.values{1}, theta_rad_aufpunkt, phi_rad_aufpunkt );
            N_theta = N_theta + N_theta_; N_phi = N_phi + N_phi_;
            L_theta = L_theta + L_theta_; L_phi = L_phi + L_phi_;
        end

        % E-fields
        erg_E_theta = -1i*k*exp(-1i*k*r) / (4*pi*r)*(L_phi+Z0*N_theta);
        erg_E_phi   =  1i*k*exp(-1i*k*r) / (4*pi*r)*(L_theta-Z0*N_phi);

        % output
        E_theta(theta_idx,phi_idx) = erg_E_theta;
        E_phi(theta_idx,phi_idx)   = erg_E_phi;

        % directivity
        U = r^2/(2*Z0) * sum(abs([erg_E_theta erg_E_phi]).^2);
        Umax = max( [Umax U] );
    end
end

% power
Prad = 0;
for a=find(nf2ff.directions==1)
    [~,~,~,~,P] = process_plane( k, n{a}, center, mesh{a}, Ef{a}.FD.values{1}, Hf{a}.FD.values{1}, theta_rad_aufpunkt, phi_rad_aufpunkt );
    Prad = Prad + P;
end

% directivity
Dmax = 4*pi*Umax / Prad;


% integrate over one plane
function [N_theta,N_phi,L_theta,L_phi,Prad] = process_plane( k, n, center, mesh, E_field, H_field, theta_rad_aufpunkt, phi_rad_aufpunkt )
% [N_theta,N_phi,L_theta,L_phi,Prad] = process_plane( k, n, center, mesh, E_field, H_field, theta_rad_aufpunkt, phi_rad_aufpunkt )
%
% k: wave number
% n: normal vector of the plane
% center: correction coordinates for the center of the antenna
% mesh: mesh info
% E_field: E field array ?x?x?x3
% H_field: H field array ?x?x?x3

% speed up
sin__theta_rad_aufpunkt = sin(theta_rad_aufpunkt);
cos__theta_rad_aufpunkt = cos(theta_rad_aufpunkt);
sin__phi_rad_aufpunkt   = sin(phi_rad_aufpunkt);
cos__phi_rad_aufpunkt   = cos(phi_rad_aufpunkt);

if abs(n(1)) == 1
    % x-plane
    x = mesh.x(1);
    [y z] = ndgrid( mesh.y, mesh.z );
    coord1 = mesh.y.';
    coord2 = mesh.z.';
    Ex = squeeze( E_field(1,:,:,1) );
    Ey = squeeze( E_field(1,:,:,2) );
    Ez = squeeze( E_field(1,:,:,3) );
    Hx = squeeze( H_field(1,:,:,1) );
    Hy = squeeze( H_field(1,:,:,2) );
    Hz = squeeze( H_field(1,:,:,3) );
elseif abs(n(2)) == 1
    % y-plane
    y = mesh.y(1);
    [x z] = ndgrid( mesh.x, mesh.z );
    coord1 = mesh.x.';
    coord2 = mesh.z.';
    Ex = squeeze( E_field(:,1,:,1) );
    Ey = squeeze( E_field(:,1,:,2) );
    Ez = squeeze( E_field(:,1,:,3) );
    Hx = squeeze( H_field(:,1,:,1) );
    Hy = squeeze( H_field(:,1,:,2) );
    Hz = squeeze( H_field(:,1,:,3) );
elseif abs(n(3)) == 1
    % z-plane
    z = mesh.z(1);
    [x y] = ndgrid( mesh.x, mesh.y );
    coord1 = mesh.x.';
    coord2 = mesh.y.';
    Ex = squeeze( E_field(:,:,1,1) );
    Ey = squeeze( E_field(:,:,1,2) );
    Ez = squeeze( E_field(:,:,1,3) );
    Hx = squeeze( H_field(:,:,1,1) );
    Hy = squeeze( H_field(:,:,1,2) );
    Hz = squeeze( H_field(:,:,1,3) );
end    

Jx = n(2) .* Hz - n(3) .* Hy;
Jy = n(3) .* Hx - n(1) .* Hz;
Jz = n(1) .* Hy - n(2) .* Hx;
Mx = -n(2) .* Ez + n(3) .* Ey;
My = -n(3) .* Ex + n(1) .* Ez;
Mz = -n(1) .* Ey + n(2) .* Ex;
r_cos_psi = x*sin__theta_rad_aufpunkt*cos__phi_rad_aufpunkt + y*sin__theta_rad_aufpunkt*sin__phi_rad_aufpunkt + z*cos__theta_rad_aufpunkt;
e_fkt     = exp( +1i*k*r_cos_psi );
N_theta = dbltrapz( ( Jx*cos__theta_rad_aufpunkt*cos__phi_rad_aufpunkt + Jy*cos__theta_rad_aufpunkt*sin__phi_rad_aufpunkt - Jz*sin__theta_rad_aufpunkt) .* e_fkt, coord1, coord2 );
N_phi   = dbltrapz( (-Jx*sin__phi_rad_aufpunkt + Jy*cos__phi_rad_aufpunkt) .* e_fkt, coord1, coord2 );
L_theta = dbltrapz( ( Mx*cos__theta_rad_aufpunkt*cos__phi_rad_aufpunkt + My*cos__theta_rad_aufpunkt*sin__phi_rad_aufpunkt - Mz*sin__theta_rad_aufpunkt) .* e_fkt, coord1, coord2 );
L_phi   = dbltrapz( (-Mx*sin__phi_rad_aufpunkt + My*cos__phi_rad_aufpunkt) .* e_fkt, coord1, coord2 );

if nargout > 4
    % Prad requested
    
    % this is crap! recode it!
    EH = zeros(size(Ex));
    for i1 = 1:numel(coord1)
        for i2 = 1:numel(coord2)
            E = [Ex(i1,i2) Ey(i1,i2) Ez(i1,i2)];
            H = [Hx(i1,i2) Hy(i1,i2) Hz(i1,i2)];
            EH(i1,i2) = real( dot(cross(E,conj(H)),n) );
        end
    end
    Prad = 0.5 * dbltrapz( EH, coord1, coord2 );
end




function Q = dbltrapz(matrix,a,b)
%DBLTRAPZ  Trapezoidal numerical integration in two dimensions.
%   Z = DBLTRAPZ(MATRIX,A,B) computes an approximation of the double integral
%   of MATRIX via the trapezoidal method (with respect to A and B).  A and B must be
%   column vectors of the same length.
%   index like this: MATRIX(A,B)

if nargin < 3, error('MATLAB:dblquad:NotEnoughInputs',...
                     'Requires at least three inputs.'); end
if size(a,2) ~= 1, error('column vectors required'); end
if size(b,2) ~= 1, error('column vectors required'); end

temp = zeros(size(b));
for i = 1:length(b) 
    temp(i) = trapz( a, matrix(:,i) );
end

Q = trapz( b, temp );