1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
function export_povray( CSX, filename, options )
% export_povray( CSX, filename, options )
%
% Exports the geometry defined in CSX to filename as a povray file.
%
% CSX: CSX-object created by InitCSX()
% filename: export filename (e.g. '/tmp/export.pov')
% options (optional): struct
% .camera: (string) use this as the camera definition line
% 1 camera on positive x-axis
% 2 camera on positive y-axis
% 3 camera on positive z-axis
% .light: (string) use this as the light definition line
% 1 point light at camera position
% .header: (string) add this to the header of the file
% .ignore: (cell array) ignore these CSX-properties
% .obj_modifier: struct
% .<propname>: (string) povray object modifier for corresponding primitives
% example: options.obj_modifier.copper = 'pigment { color rgbt <0.8,0.5,0,0> }';
%
% See also InitCSX
% CSXCAD matlab interface
% -----------------------
% author: Sebastian Held <sebastian.held@gmx.de>
% 12. Jun 2010: initial version
if nargin < 3
options = [];
end
fid = fopen( filename, 'w' );
% write header
fprintf( fid, '%s\n', '// povray-file exported by openEMS' );
fprintf( fid, '%s\n', '#include "colors.inc"' );
fprintf( fid, '%s\n', '#include "metals.inc"' );
fprintf( fid, '%s\n', '#include "textures.inc"' );
fprintf( fid, '%s\n', '#include "transforms.inc"' );
fprintf( fid, '%s\n', 'background { color rgb<1.000000,1.000000,1.000000> }' );
if isfield(options,'header')
fprintf( fid, '%s\n', header );
end
if isfield(CSX.Properties,'Material')
% process material
Material = CSX.Properties.Material;
process_primitives( fid, Material, 'pigment { color rgbt <0.000, 0.533, 0.800,0.0> } finish { diffuse 0.6 }', options );
end
if isfield(CSX.Properties,'Metal')
% process PEC
Metal = CSX.Properties.Metal;
process_primitives( fid, Metal, 'texture { Copper_Metal }', options );
end
% create coordinate system vectors (for debugging)
debug_coords = 0;
if debug_coords
fprintf( fid, [...
'#macro Axis_( AxisLen, RedTexture,WhiteTexture) \n' ...
'union{\n' ...
' cylinder {<0,-AxisLen,0>,<0,AxisLen,0>,0.5\n' ...
' texture{checker texture{RedTexture} \n' ...
' texture{WhiteTexture}\n' ...
' translate<0.1,0,0.1>}}\n' ...
' cone{<0,AxisLen,0>,2,<0,AxisLen+0.7,0>,0\n' ...
' texture{RedTexture}}\n' ...
' } // end of union \n' ...
'#end // of macro "Axis( )"\n' ...
'\n' ...
'#macro AxisXYZ( AxisLenX, AxisLenY, AxisLenZ, TexRed, TexWhite)\n' ...
'union{\n' ...
' object{Axis_(AxisLenX, TexRed, TexWhite) rotate< 0,0,-90>} // x axis\n' ...
' object{Axis_(AxisLenY, TexRed, TexWhite) rotate< 0,0, 0>} // y axis \n' ...
' object{Axis_(AxisLenZ, TexRed, TexWhite) rotate<90,0, 0>} // z axis\n' ...
' text{ ttf"timrom.ttf", "x", 0.15, 0 texture{TexRed} \n' ...
' scale 10 translate <AxisLenX+0.05,0.4,-0.10>}\n' ...
' text{ ttf"timrom.ttf", "y", 0.15, 0 texture{TexRed} \n' ...
' scale 10 translate <-0.75,AxisLenY+0.50,-0.00>}\n' ...
' text{ ttf"timrom.ttf", "z", 0.15, 0 texture{TexRed} \n' ...
' scale 10 translate <-0.75,0.2,AxisLenZ+0.50>}\n' ...
' scale <1000,1000,1000>\n' ...
'} // end of union\n' ...
'#end// of macro\n' ...
'\n' ...
'object{AxisXYZ( 10, 10, 10, texture{ pigment{rgb<1,0,0>} finish{ phong 1}}, texture{ pigment{rgb<1,1,1>} finish{ phong 1}} )}\n' ...
''] );
end
% create camera and light
xmin = min(CSX.RectilinearGrid.XLines);
xmax = max(CSX.RectilinearGrid.XLines);
ymin = min(CSX.RectilinearGrid.YLines);
ymax = max(CSX.RectilinearGrid.YLines);
zmin = min(CSX.RectilinearGrid.ZLines);
zmax = max(CSX.RectilinearGrid.ZLines);
center = [(xmin+xmax)/2 (ymin+ymax)/2 (zmin+zmax)/2];
% default camera
camera_pos = [center(1), ymin, zmax+sqrt((xmax-xmin)^2+(ymax-ymin)^2)];
camera = ['camera {location ' pov_vect(camera_pos) ' right <-1.33,0,0> look_at ' pov_vect(center) ' angle 40}']; % right-handed coordinate system
if isfield(options,'camera')
if ischar(options.camera)
camera = options.camera;
elseif options.camera == 1
% looking from positive x-axis
camera_pos = [xmax+sqrt((ymax-ymin)^2+(zmax-zmin)^2), 0, 0];
camera = ['camera {location ' pov_vect(camera_pos) ' right <-1.33,0,0> look_at ' pov_vect(center) ' angle 40}'];
elseif options.camera == 2
% looking from positive y-axis
camera_pos = [0, ymax+sqrt((xmax-xmin)^2+(zmax-zmin)^2), 0];
camera = ['camera {location ' pov_vect(camera_pos) ' right <-1.33,0,0> look_at ' pov_vect(center) ' angle 40}'];
elseif options.camera == 3
% looking from positive z-axis
camera_pos = [0, 0, zmax+sqrt((xmax-xmin)^2+(ymax-ymin)^2)];
camera = ['camera {location ' pov_vect(camera_pos) ' right <-1.33,0,0> look_at ' pov_vect(center) ' angle 40}'];
end
end
fprintf( fid, '%s\n', camera );
% default light
light = 'light_source { <3500,-3500,10000> White area_light <10000, 0, 0>, <0, 10000, 0>, 2, 2 adaptive 1 }';
if isfield(options,'light')
if ischar(options.light)
light = options.light;
elseif options.light == 1
% point light at position of camera
light = ['light_source { ' pov_vect(camera_pos) ', rgb <1,1,1> }'];
end
end
fprintf( fid, '%s\n', light );
fclose( fid );
% -----------------------------------------------------------------------------
function str = pov_vect( vec )
if numel(vec) == 3
str = ['<' num2str(vec(1)) ',' num2str(vec(2)) ',' num2str(vec(3)) '>'];
else
str = ['<' num2str(vec(1)) ',' num2str(vec(2)) '>'];
end
% -----------------------------------------------------------------------------
function str = primitive_box( CSX_box, options )
start = [CSX_box.P1.ATTRIBUTE.X CSX_box.P1.ATTRIBUTE.Y CSX_box.P1.ATTRIBUTE.Z];
stop = [CSX_box.P2.ATTRIBUTE.X CSX_box.P2.ATTRIBUTE.Y CSX_box.P2.ATTRIBUTE.Z];
if any( start == stop )
% 2D box
% povray supports 2D polygons, but has no priority concept, therefore use the box primitive
epsilon = 1; % FIXME this should be small compared to any other linear dimension of any object in the scene
epsilon = (start == stop) * epsilon; % select identical components
start = start - epsilon;
stop = stop + epsilon;
end
str = ['box { ' pov_vect(start) ', ' pov_vect(stop) ' ' options '}'];
% -----------------------------------------------------------------------------
function str = primitive_cylinder( CSX_cylinder, options )
start = [CSX_cylinder.P1.ATTRIBUTE.X CSX_cylinder.P0.ATTRIBUTE.Y CSX_cylinder.P1.ATTRIBUTE.Z];
stop = [CSX_cylinder.P2.ATTRIBUTE.X CSX_cylinder.P1.ATTRIBUTE.Y CSX_cylinder.P2.ATTRIBUTE.Z];
radius = CSX_cylinder.ATTRIBUTE.Radius;
str = ['cylinder { ' pov_vect(start) ', ' pov_vect(stop) ', ' num2str(radius) ' ' options '}'];
% -----------------------------------------------------------------------------
function str = primitive_wire( CSX_wire, options )
radius = CSX_wire.ATTRIBUTE.WireRadius;
str = ['sphere_sweep { linear_spline, ' num2str(numel(CSX_wire.Vertex))];
for a=1:numel(CSX_wire.Vertex)
% iterate over all vertices
v = [CSX_wire.Vertex{a}.ATTRIBUTE.X CSX_wire.Vertex{a}.ATTRIBUTE.Y CSX_wire.Vertex{a}.ATTRIBUTE.Z];
str = [str ', ' pov_vect(v) ', ' num2str(radius)];
end
str = [str ' ' options '}'];
% -----------------------------------------------------------------------------
function str = primitive_polygon( CSX_polygon, options )
Elevation = -CSX_polygon.ATTRIBUTE.Elevation;
% NormDir = CSX_polygon.ATTRIBUTE.NormDir;
epsilon = 1; % FIXME this should be small compared to any other linear dimension of any object in the scene
str = ['prism { linear_spline linear_sweep ' num2str(Elevation - epsilon) ', ' num2str(Elevation + epsilon) ', ' num2str(numel(CSX_polygon.Vertex)+1)];
for a=1:numel(CSX_polygon.Vertex)
% iterate over all vertices
v = [CSX_polygon.Vertex{a}.ATTRIBUTE.X1 CSX_polygon.Vertex{a}.ATTRIBUTE.X2];
str = [str ', ' pov_vect(v)];
end
v = [CSX_polygon.Vertex{1}.ATTRIBUTE.X1 CSX_polygon.Vertex{1}.ATTRIBUTE.X2]; % close prism
str = [str ', ' pov_vect(v)];
% str = [str ' ' options ' Point_At_Trans(' pov_vect(NormDir) ')}']; % needs transforms.inc
str = [str ' ' options ' rotate<-90,0,0> }'];
% -----------------------------------------------------------------------------
function process_primitives( fid, prop, default_obj_modifier, options )
ignore = {};
if isfield(options,'ignore'), ignore = options.ignore; end
for num=1:numel(prop)
Name = prop{num}.ATTRIBUTE.Name;
if any( strcmp(Name,ignore) )
disp( ['omitting ' Name '...'] );
continue
end
obj_modifier = default_obj_modifier;
if isfield(options,'obj_modifier') && isfield(options.obj_modifier,Name)
obj_modifier = options.obj_modifier.(Name);
end
disp( ['processing ' prop{num}.ATTRIBUTE.Name '...'] );
fprintf( fid, '%s\n', ['// ' Name] );
if isfield(prop{num}.Primitives,'Box')
for a=1:numel(prop{num}.Primitives.Box)
% iterate over all boxes
Box = prop{num}.Primitives.Box{a};
str = primitive_box( Box, obj_modifier );
fprintf( fid, '%s\n', str );
end
end
if isfield(prop{num}.Primitives,'Cylinder')
for a=1:numel(prop{num}.Primitives.Cylinder)
% iterate over all cylinders
Cylinder = prop{num}.Primitives.Cylinder{a};
str = primitive_cylinder( Cylinder, obj_modifier );
fprintf( fid, '%s\n', str );
end
end
if isfield(prop{num}.Primitives,'Wire')
for a=1:numel(prop{num}.Primitives.Wire)
% iterate over all wires
Wire = prop{num}.Primitives.Wire{a};
str = primitive_wire( Wire, obj_modifier );
fprintf( fid, '%s\n', str );
end
end
if isfield(prop{num}.Primitives,'Polygon')
for a=1:numel(prop{num}.Primitives.Polygon)
% iterate over all polygons
Polygon = prop{num}.Primitives.Polygon{a};
str = primitive_polygon( Polygon, obj_modifier );
fprintf( fid, '%s\n', str );
end
end
end
|