1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
//-----------------------------------------------------------------------------
//
// class EnvmapImage
//
//-----------------------------------------------------------------------------
#include <EnvmapImage.h>
#include <ImathFun.h>
using namespace Imf;
using namespace Imath;
EnvmapImage::EnvmapImage ():
_type (ENVMAP_LATLONG),
_dataWindow (V2i (0, 0), V2i (0, 0)),
_pixels (1, 1)
{
clear();
}
EnvmapImage::EnvmapImage (Envmap type, const Box2i &dataWindow):
_type (type),
_dataWindow (dataWindow),
_pixels (dataWindow.max.y - dataWindow.min.y + 1,
dataWindow.max.x - dataWindow.min.x + 1)
{
clear();
}
void
EnvmapImage::resize (Envmap type, const Box2i &dataWindow)
{
_pixels.resizeEraseUnsafe (dataWindow.max.y - dataWindow.min.y + 1,
dataWindow.max.x - dataWindow.min.x + 1);
_type = type;
_dataWindow = dataWindow;
clear();
}
void
EnvmapImage::clear ()
{
int w = _dataWindow.max.x - _dataWindow.min.x + 1;
int h = _dataWindow.max.y - _dataWindow.min.y + 1;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
Rgba &p = _pixels[y][x];
p.r = 0;
p.g = 0;
p.b = 0;
p.a = 0;
}
}
}
Envmap
EnvmapImage::type () const
{
return _type;
}
const Box2i &
EnvmapImage::dataWindow () const
{
return _dataWindow;
}
Array2D<Rgba> &
EnvmapImage::pixels ()
{
return _pixels;
}
const Array2D<Rgba> &
EnvmapImage::pixels () const
{
return _pixels;
}
namespace {
V2f
dirToPosLatLong (const Box2i &dataWindow, const V3f &dir)
{
return LatLongMap::pixelPosition (dataWindow, dir);
}
V2f
dirToPosCube (const Box2i &dataWindow, const V3f &dir)
{
CubeMapFace face;
V2f posInFace;
CubeMap::faceAndPixelPosition (dir, dataWindow, face, posInFace);
return CubeMap::pixelPosition (face, dataWindow, posInFace);
}
} // namespace
Rgba
EnvmapImage::filteredLookup (V3f d, float r, int n) const
{
//
// Filtered environment map lookup: Take n by n point samples
// from the environment map, clustered around direction d, and
// combine the samples with a tent filter.
//
//
// Depending on the type of map, pick an appropriate function
// to convert 3D directions to 2D pixel poitions.
//
V2f (* dirToPos) (const Box2i &, const V3f &);
if (_type == ENVMAP_LATLONG)
dirToPos = dirToPosLatLong;
else
dirToPos = dirToPosCube;
//
// Pick two vectors, dx and dy, of length r, that are orthogonal
// to the lookup direction, d, and to each other.
//
d.normalize();
V3f dx, dy;
if (abs (d.x) > 0.707f)
dx = (d % V3f (0, 1, 0)).normalized() * r;
else
dx = (d % V3f (1, 0, 0)).normalized() * r;
dy = (d % dx).normalized() * r;
//
// Take n by n point samples from the map, and add them up.
// The directions for the point samples are all within the pyramid
// defined by the vectors d-dy-dx, d-dy+dx, d+dy-dx, d+dy+dx.
//
float wt = 0;
float cr = 0;
float cg = 0;
float cb = 0;
float ca = 0;
for (int y = 0; y < n; ++y)
{
float ry = float (2 * y + 2) / float (n + 1) - 1;
float wy = 1 - abs (ry);
V3f ddy (ry * dy);
for (int x = 0; x < n; ++x)
{
float rx = float (2 * x + 2) / float (n + 1) - 1;
float wx = 1 - abs (rx);
V3f ddx (rx * dx);
Rgba s = sample (dirToPos (_dataWindow, d + ddx + ddy));
float w = wx * wy;
wt += w;
cr += s.r * w;
cg += s.g * w;
cb += s.b * w;
ca += s.a * w;
}
}
wt = 1 / wt;
Rgba c;
c.r = cr * wt;
c.g = cg * wt;
c.b = cb * wt;
c.a = ca * wt;
return c;
}
Rgba
EnvmapImage::sample (const V2f &pos) const
{
//
// Point-sample the environment map image at 2D position pos.
// Interpolate bilinearly between the four nearest pixels.
//
int x1 = Imath::floor (pos.x);
int x2 = x1 + 1;
float sx = x2 - pos.x;
float tx = 1 - sx;
x1 = clamp (x1, _dataWindow.min.x, _dataWindow.max.x) - _dataWindow.min.x;
x2 = clamp (x2, _dataWindow.min.x, _dataWindow.max.x) - _dataWindow.min.x;
int y1 = Imath::floor (pos.y);
int y2 = y1 + 1;
float sy = y2 - pos.y;
float ty = 1 - sy;
y1 = clamp (y1, _dataWindow.min.y, _dataWindow.max.y) - _dataWindow.min.y;
y2 = clamp (y2, _dataWindow.min.y, _dataWindow.max.y) - _dataWindow.min.y;
Rgba p11 = _pixels[y1][x1];
Rgba p12 = _pixels[y1][x2];
Rgba p21 = _pixels[y2][x1];
Rgba p22 = _pixels[y2][x2];
Rgba p;
p.r = (p11.r * sx + p12.r * tx) * sy + (p21.r * sx + p22.r * tx) * ty;
p.g = (p11.g * sx + p12.g * tx) * sy + (p21.g * sx + p22.g * tx) * ty;
p.b = (p11.b * sx + p12.b * tx) * sy + (p21.b * sx + p22.b * tx) * ty;
p.a = (p11.a * sx + p12.a * tx) * sy + (p21.a * sx + p22.a * tx) * ty;
return p;
}
|