1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
#ifdef NDEBUG
# undef NDEBUG
#endif
#include <ImfHuf.h>
#include "ImathRandom.h"
#include <ImfArray.h>
#include <iostream>
#include <exception>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
using namespace OPENEXR_IMF_NAMESPACE;
using namespace std;
namespace {
void
fill1 (unsigned short data[/*n*/], int n, float bias, IMATH_NAMESPACE::Rand48 & rand48)
{
for (int i = 0; i < n; ++i)
data[i] = (unsigned short)
(pow (rand48.nextf(), double(bias)) * (USHRT_MAX + 1));
}
void
fill2 (unsigned short data[/*n*/], int n, int m, IMATH_NAMESPACE::Rand48 & rand48)
{
for (int i = 0; i < n; ++i)
data[i] = 0;
for (int i = 0; i < m; ++i)
data[rand48.nexti() % n] = (unsigned short) (rand48.nextf() * (USHRT_MAX + 1));
}
void
fill3 (unsigned short data[/*n*/], int n, int m)
{
for (int i = 0; i < n; ++i)
data[i] = m;
}
void
fill4 (unsigned short data[/*n*/], int n)
{
for (int i = 0; i < n; ++i)
data[i] = i & USHRT_MAX;
}
void
fill5 (unsigned short data[/*n*/], int n)
{
for (int i = 0; i < n; ++i)
data[i] = 0;
int j = 0, k = 0;
for (int i = 0; i < n; ++i)
{
data[i] = j;
j = j + k;
k = k + 1;
if (j > USHRT_MAX)
break;
}
}
void
compressUncompress (const unsigned short raw[], int n)
{
Array <char> compressed (3 * n + 4 * 65536);
Array <unsigned short> uncompressed (n);
cout << "compressing " << flush;
int nCompressed = hufCompress (raw, n, compressed);
cout << "uncompressing " << flush;
hufUncompress (compressed, nCompressed, uncompressed, n);
cout << "comparing: " << flush;
for (int i = 0; i < n; ++i)
assert (uncompressed[i] == raw[i]);
cout << sizeof (raw[0]) * n << " bytes, compressed " <<
nCompressed << " bytes" << endl;
}
void
compressUncompressSubset(const unsigned short raw[], int n)
{
// Test various subsets of the data set
Array <char> compressed (3 * n + 4 * 65536);
Array <unsigned short> uncompressed (n);
int maxOffset = 16;
if (n <= maxOffset) {
maxOffset = n-1;
}
for (int offset=1; offset<maxOffset; ++offset) {
int maxLength = n - offset;
int minLength = maxLength - 16;
if (minLength < 1) minLength = 1;
for (int length=minLength; length<=maxLength; ++length) {
cout << "compressing " << flush;
int nCompressed = hufCompress (raw + offset, length, compressed + offset);
cout << "uncompressing " << flush;
hufUncompress (compressed + offset, nCompressed, uncompressed + offset, length);
for (int i = 0; i < length; ++i)
assert (uncompressed[offset+i] == raw[offset+i]);
cout << sizeof (raw[0]) * length << " bytes, compressed " << nCompressed << " bytes ";
cout << "(+" << offset << ",-" << n-offset-length << ")" << endl;
}
}
}
//
// Check the hash is 'dekHash'.
// This check is intended to test for regressions
// in the hufCompress() result or difference results across OSes.
//
// The platform agnostic DEK hash of the huf compressed data for
// the set of numbers generated by fill4() and fill5().
// This DEK hash is determined from an aprior initial run of this
// test noting its value from the assert message compressVerify().
//
#define HUF_COMPRESS_DEK_HASH_FOR_FILL4_USHRT_MAX_PLUS_ONE 2013380646U
#define HUF_COMPRESS_DEK_HASH_FOR_FILL4_N 213880353U
#define HUF_COMPRESS_DEK_HASH_FOR_FILL5_N 2492982090U
void
compressVerify (const unsigned short raw[],
int n,
const unsigned int dekHash)
{
Array <char> compressed (3 * n + 4 * 65536);
int nCompressed = hufCompress (raw, n, compressed);
//
// This hash algorithm proposed by Donald E. Knuth in
// The Art Of Computer Programming Volume 3,
// under the topic of sorting and search chapter 6.4.
//
unsigned int compressedHash = nCompressed;
const unsigned char* cptr = reinterpret_cast<const unsigned char*>( (const char*) compressed);
for (int i = 0; i < nCompressed; ++i)
{
compressedHash =
((compressedHash << 5) ^ (compressedHash >> 27)) ^ (*cptr++);
}
cout << "verifying compressed checksum hash = "
<< compressedHash << std::endl;
if (compressedHash != dekHash)
{
cout << "hash verification failed. Got " << compressedHash << " expected " << dekHash << std::endl;
const unsigned char* cptr = reinterpret_cast<const unsigned char*>( (const char*) compressed);
for(int i = 0 ; i < nCompressed ; ++i )
{
cout << std::hex << (0xFF & (int) (*cptr++));
if ( (i & 0xF) ==0 )
{
cout << '\n';
}
else
{
cout << ' ';
}
}
cout << "\n";
}
assert (compressedHash == dekHash);
}
} // namespace
void
testHuf (const std::string&)
{
try
{
cout << "Testing Huffman encoder" << endl;
IMATH_NAMESPACE::Rand48 rand48 (0);
//
// FastHufDecoder is used for more than 128 bits, so first test with fewer than 128 bits,
// then test FastHufDecoder
//
for (int pass = 0 ; pass < 2 ; ++pass)
{
int N = pass==0 ? 12 : 1000000;
Array <unsigned short> raw (N);
fill1 (raw, N, 1, rand48); // test various symbol distributions
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
fill1 (raw, N, 10, rand48);
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
fill1 (raw, N, 100, rand48);
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
fill1 (raw, N, 1000, rand48);
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
fill2 (raw, N, 1, rand48);
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
fill2 (raw, N, 10, rand48);
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
fill2 (raw, N, 100, rand48);
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
fill2 (raw, N, 1000, rand48);
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
fill3 (raw, N, 0);
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
fill3 (raw, N, 1);
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
fill3 (raw, N, USHRT_MAX - 1);
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
fill3 (raw, N, USHRT_MAX);
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
if (pass==1)
{
fill4 (raw, USHRT_MAX + 1);
compressVerify(raw, USHRT_MAX + 1, HUF_COMPRESS_DEK_HASH_FOR_FILL4_USHRT_MAX_PLUS_ONE);
compressUncompress (raw, USHRT_MAX + 1);
compressUncompressSubset (raw, USHRT_MAX + 1);
fill4 (raw, N);
compressVerify(raw, N, HUF_COMPRESS_DEK_HASH_FOR_FILL4_N);
}
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
fill4 (raw, 0);
compressUncompress (raw, 0); // test small input data sets
fill4 (raw, 1);
compressUncompress (raw, 1);
fill4 (raw, 2);
compressUncompress (raw, 2);
fill4 (raw, 3);
compressUncompress (raw, 3);
fill5 (raw, N); // test run-length coding of code table
if (pass==1)
{
compressVerify(raw, N, HUF_COMPRESS_DEK_HASH_FOR_FILL5_N);
}
compressUncompress (raw, N);
compressUncompressSubset (raw, N);
}
cout << "ok\n" << endl;
}
catch (const std::exception &e)
{
cerr << "ERROR -- caught exception: " << e.what() << endl;
assert (false);
}
}
|