1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
|
..
SPDX-License-Identifier: BSD-3-Clause
Copyright Contributors to the OpenEXR Project.
Reading and Writing Image Files with the OpenEXR Library
########################################################
Document Purpose and Audience
=============================
This document shows how to write C++ code that reads and writes OpenEXR
2.0 image files.
The text assumes that the reader is familiar with OpenEXR terms like
“channel”, “attribute”, “data window” or “deep data”. For an explanation
of those terms see the :doc:`TechnicalIntroduction` document.
The OpenEXR source distribution contains a subdirectory, OpenEXRExamples,
with most of the code examples below. A Makefile is also provided, so
that the examples can easily be compiled and run.
A description of the file structure and format is provided in
:doc:`OpenEXRFileLayout`.
Scan Line Based and Tiled OpenEXR files
=======================================
In an OpenEXR file, pixel data can be stored either as scan lines or as
tiles. Files that store pixels as tiles can also store multi-resolution
images. For each of the two storage formats (scan line or tile-based),
the OpenEXR library supports two reading and writing interfaces:
1. The first, fully general, interface allows access to arbitrary
channels, and supports many different in-memory pixel data layouts.
2. The second interface is easier to use, but limits access to 16-bit
(`HALF`) RGBA (red, green, blue, alpha) channels, and provides fewer
options for laying out pixels in memory.
The interfaces for reading and writing OpenEXR files are implemented in
the following eight C++ classes:
.. list-table::
:header-rows: 1
:align: left
* -
- tiles
- scan lines
- scan lines and tiles
* - arbitrary channels
- ``TiledInputFile``
-
- ``InputFile``
* -
- ``TiledOutputFile``
- ``OutputFile``
-
* - RGBA only
- ``TiledRgbaInputFile``
-
- ``RgbaInputFile``
* -
- ``TiledRgbaOutputFile``
- ``RgbaOutputFile``
-
The classes for reading scan line based images (``InputFile`` and
``RgbaInputFile``) can also be used to read tiled image files. This way,
programs that do not need support for tiled or multi-resolution images
can always use the rather straightforward scan line interfaces, without
worrying about complications related to tiling and multiple resolutions.
When a multi-resolution file is read via a scan line interface, only the
highest-resolution version of the image is accessible.
Multi-Part and Deep Data
------------------------
The procedure for writing multi-part and deep data files is similar to
writing scan line and tile. Though there is no simplified interface,
such as the RGBA-only interface.
This table describes the significant differences between writing
single-part scan line and tile files and writing multi-part and deep
data files.
+-------------------------+------------------------------------------------+---------------------------------------+
| Feature | scan line and tile | Multi-part and deep data |
+=========================+================================================+=======================================+
| Channel names may be | Some channel names are reserved | Channel name “sample count” is |
| reserved | in practice, but were never | reserved for a pixel sample count |
| | formally defined. | slice in frame buffer. |
| | | |
| | | **Note:** The name “sample count” |
| | | (all lowercase) is subject to change. |
+-------------------------+------------------------------------------------+---------------------------------------+
| Multiple parts | Single-part format is intended for | |
| | storing a single multichannel image | Multi-part files support multiple |
| | | independent parts. This allows |
| | | storing multiple views in the same |
| | | file for stereo images, storing |
| | | multiple resolutions in different |
| | | parts. It is possible to include |
| | | one or more scan line, tile, deep |
| | | scan line or deep tile format |
| | | images within a multi-part file. |
| | | |
| | | Custom data formats can also be |
| | | used to store additional parts, |
| | | but this is outside the scope of |
| | | this document. |
+-------------------------+------------------------------------------------+---------------------------------------+
| Backwards-compatible | The new formats share the same abstract low-level IO as OpenEXR |
| low-level io available | 1.7. It is therefore possible to use the same libraries to |
| | implement low level IO to read both formats. |
+-------------------------+------------------------------------------------+---------------------------------------+
Using the RGBA-only Interface for Scan Line Based Files
=======================================================
Writing an RGBA Image File
--------------------------
Writing a simple RGBA image file is fairly straightforward:
.. literalinclude:: src/writeRgba1.cpp
:linenos:
Construction of an RgbaOutputFile object, on line 4, creates an OpenEXR header,
sets the header's attributes, opens the file with the specified name, and stores
the header in the file. The header's display window and data window are both set
to ``(0,0) - (width-1, height-1)``. The channel list contains four channels,
``R``, ``G``, ``B``, and ``A``, of type ``half``.
Line 5 specifies how the pixel data are laid out in memory. In our
example, the ``pixels`` pointer is assumed to point to the beginning of an
array of ``width*height`` pixels. The pixels are represented as ``Rgba``
structs, which are defined like this:
.. code-block::
:linenos:
struct Rgba
{
half r; // red
half g; // green
half b; // blue
half a; // alpha (opacity)
};
The elements of our array are arranged so that the pixels of each scan
line are contiguous in memory. The ``setFrameBuffer()`` function takes
three arguments, ``base``, ``xStride``, and ``ystride``. To find the address
of pixel ``(x,y)``, the ``RgbaOutputFile`` object computes
base + x * xStride + y * yStride.
In this case, ``base``, ``xStride`` and ``yStride`` are set to
``pixels``, ``1``, and ``width``, respectively, indicating that pixel
``(x,y)`` can be found at memory address
pixels + 1 * x + width * y.
The call to ``writePixels(),`` on line 6, copies the image's pixels from
memory to the file. The argument to ``writePixels()``, ``height``, specifies
how many scan lines worth of data are copied.
Finally, returning from function ``writeRgba1()`` destroys the local
``RgbaOutputFile`` object, thereby closing the file.
Why do we have to tell the ``writePixels()`` function how many scan lines
we want to write? Shouldn't the ``RgbaOutputFile`` object be able to
derive the number of scan lines from the data window? The OpenEXR library
doesn't require writing all scan lines with a single ``writePixels()``
call. Many programs want to write scan lines individually, or in small
blocks. For example, rendering computer-generated images can take a
significant amount of time, and many rendering programs want to store
each scan line in the image file as soon as all of the pixels for that
scan line are available. This way, users can look at a partial image
before rendering is finished. The OpenEXR library allows writing the scan
lines in top-to-bottom or bottom-to-top direction. The direction is
defined by the file header's line order attribute (``INCREASING_Y`` or
``DECREASING_Y``). By default, scan lines are written top to bottom
(``INCREASING_Y``).
You may have noticed that in the example above, there are no explicit
checks to verify that writing the file actually succeeded. If the OpenEXR
library detects an error, it throws a C++ exception instead of returning
a C-style error code. With exceptions, error handling tends to be easier
to get right than with error return values. For instance, a program that
calls our ``writeRgba1()`` function can handle all possible error
conditions with a single try/catch block:
.. code-block::
:linenos:
try
{
writeRgba1 (fileName, pixels, width, height);
}
catch (const std::exception &exc)
{
std::cerr << exc.what() << std::endl;
}
Writing a Cropped RGBA Image
----------------------------
Now we are going to store a cropped image in a file. For this example,
we assume that we have a frame buffer that is large enough to hold an
image with ``width`` by ``height`` pixels, but only part of the frame buffer
contains valid data. In the file's header, the size of the whole image
is indicated by the display window, ``(0,0) - (width-1, height-1)``, and
the data window specifies the region for which valid pixel data exist.
Only the pixels in the data window are stored in the file.
.. code-block::
:linenos:
void
writeRgba2 (const char fileName[],
const Rgba *pixels,
int width,
int height,
const Box2i &dataWindow)
{
Box2i displayWindow (V2i (0, 0), V2i (width - 1, height - 1));
RgbaOutputFile file (fileName, displayWindow, dataWindow, WRITE_RGBA);
file.setFrameBuffer (pixels, 1, width);
file.writePixels (dataWindow.max.y - dataWindow.min.y + 1);
}
The code above is similar to that in `Writing an RGBA Image File`_, where the
whole image was stored in the file. Two things are different, however: When the
``RgbaOutputFile`` object is created, the data window and the display window are
explicitly specified rather than being derived from the image's width and
height. The number of scan lines stored in the file by ``writePixels()`` is
equal to the height of the data window instead of the height of the whole
image. Since we are using the default ``INCREASING_Y`` direction for storing the
scan lines in the file, ``writePixels()`` starts at the top of the data window,
at y coordinate ``dataWindow.min.y``, and proceeds toward the bottom, at y
coordinate ``dataWindow.max.y``.
Even though we are storing only part of the image in the file, the frame
buffer is still large enough to hold the whole image. In order to save
memory, a smaller frame buffer could have been allocated, just big
enough to hold the contents of the data window. Assuming that the pixels
were still stored in contiguous scan lines, with the ``pixels`` pointer
pointing to the pixel at the upper left corner of the data window, at
coordinates ``(dataWindow.min.x, dataWindow.min.y)``, the arguments to the
``setFrameBuffer()`` call would have to be to be changed as follows:
.. code-block::
:linenos:
int dwWidth = dataWindow.max.x - dataWindow.min.x + 1;
file.setFrameBuffer (pixels - dataWindow.min.x - dataWindow.min.y * dwWidth, 1, dwWidth);
With these settings, evaluation of
.. code-block::
base + x * xStride + y * yStride
for pixel ``(dataWindow.min.x, dataWindow.min.y)`` produces
.. code-block::
:linenos:
pixels - dataWindow.min.x - dataWindow.min.y * dwWidth
+ dataWindow.min.x * 1
+ dataWindow.min.y * dwWidth
= pixels -
- dataWindow.min.x
- dataWindow.min.y * (dataWindow.max.x - dataWindow.min.x + 1)
+ dataWindow.min.x
+ dataWindow.min.y * (dataWindow.max.x - dataWindow.min.x + 1)
= pixels,
which is exactly what we want. Similarly, calculating the addresses for pixels
``(dataWindow.min.x+1, dataWindow.min.y)`` and ``(dataWindow.min.x,
dataWindow.min.y+1)`` yields ``pixels+1* and *pixels+dwWidth``, respectively.
Storing Custom Attributes
-------------------------
We will now to store an image in a file, and we will add two extra
attributes to the image file header: a string, called ``comments``, and a
4×4 matrix, called ``cameraTransform``.
.. literalinclude:: src/writeRgba3.cpp
:language: c++
:linenos:
The ``setFrameBuffer()`` and ``writePixels()`` calls are the same as in the
previous examples, but construction of the ``RgbaOutputFile`` object is
different. The constructors in the previous examples automatically
created a header on the fly, and immediately stored it in the file. Here
we explicitly create a header and add our own attributes to it. When we
create the ``RgbaOutputFile`` object, we tell the constructor to use our
header instead of creating its own.
In order to make it easier to exchange data between programs written by
different people, the OpenEXR library defines a set of standard attributes for
commonly used data, such as colorimetric information, time and place where an
image was recorded, or the owner of an image file's content. For the current
list of standard attributes, see the header file ``ImfStandardAttributes.h``. The
list is expected to grow over time as OpenEXR users identify new types of data
they would like to represent in a standard format. If you need to store some
piece of information in an OpenEXR file header, it is probably a good idea to
check if a suitable standard attribute exists, before you define a new
attribute.
Reading an RGBA Image File
--------------------------
Reading an RGBA image is almost as easy as writing one:
.. literalinclude:: src/readRgba1.cpp
:language: c++
:linenos:
Constructing an ``RgbaInputFile`` object, passing the name of the file to
the constructor, opens the file and reads the file's header.
After asking the ``RgbaInputFile`` object for the file's data window, we
allocate a buffer for the pixels. For convenience, we use the OpenEXR
library's ``Array2D`` class template (the call to ``resizeErase()`` does the
actual allocation). The number of scan lines in the buffer is equal to
the height of the data window, and the number of pixels per scan line is
equal to the width of the data window. The pixels are represented as
``Rgba`` structs.
Note that we ignore the display window in this example; in a program
that wanted to place the pixels in the data window correctly in an
overall image, the display window would have to be taken into account.
Just as for writing a file, calling ``setFrameBuffer()`` tells the
``RgbaInputFile`` object how to access individual pixels in the buffer.
(See also `Writing a Cropped RGBA Image`_.)
Calling ``readPixels()`` copies the pixel data from the file into the
buffer. If one or more of the ``R``, ``G``, ``B``, and ``A`` channels
are missing in the file, the corresponding field in the pixels is
filled with an appropriate default value. The default value for ``R``,
``G`` and ``B`` is 0.0, or black; the default value for ``A`` is 1.0,
or opaque.
Finally, returning from function ``readRgba1()`` destroys the local
``RgbaInputFile`` object, thereby closing the file.
Unlike the ``RgbaOutputFile``\'s ``writePixels()`` method,
``readPixels()`` has two arguments. Calling ``readPixels(y1,y2)``
copies the pixels for all scan lines with y coordinates from ``y1`` to
``y2`` into the frame buffer. This allows access to the the scan
lines in any order. The image can be read all at once, one scan line
at a time, or in small blocks of a few scan lines. It is also possible
to skip parts of the image.
Note that even though random access is possible, reading the scan lines
in the same order as they were written, is more efficient. Random access
to the file requires seek operations, which tend to be slow. Calling the
RgbaInputFile's ``lineOrder()`` method returns the order in which the scan
lines in the file were written (``INCREASING_Y`` or ``DECREASING_Y``). If
successive calls to ``readPixels()`` access the scan lines in the right
order, the OpenEXR library reads the file as fast as possible, without
seek operations.
Reading an RGBA Image File in Chunks
------------------------------------
The following shows how to read an RGBA image in blocks of a few scan
lines. This is useful for programs that want to process high-resolution
images without allocating enough memory to hold the complete image.
These programs typically read a few scan lines worth of pixels into a
memory buffer, process the pixels, and store them in another file. The
buffer is then re-used for the next set of scan lines. Image operations
like color-correction or compositing ("A over B") are very easy to do
incrementally this way. With clever buffering of a few extra scan lines,
incremental versions of operations that require access to neighboring
pixels, like blurring or sharpening, are also possible.
.. literalinclude:: src/readRgba2.cpp
:language: c++
:linenos:
Again, we open the file and read the file header by constructing an
``RgbaInputFile`` object. Then we allocate a memory buffer that is
just large enough to hold ten complete scan lines. We call
``readPixels()`` to copy the pixels from the file into our buffer, ten
scan lines at a time. Since we want to re-use the buffer for every
block of ten scan lines, we have to call ``setFramebuffer()`` before
each ``readPixels()`` call, in order to associate memory address
``&pixels[0][0]`` first with pixel coordinates ``(dw.min.x,
dw.min.y)``, then with ``(dw.min.x, dw.min.y+10)``, ``(dw.min.x,
dw.min.y+20)`` and so on.
Reading Custom Attributes
-------------------------
In `Storing Custom Attributes`_, we showed how to store custom
attributes in the image file header. Here we show how to test whether
a given file's header contains particular attributes, and how to read
those attributes' values.
.. literalinclude:: src/readHeader.cpp
:language: c++
:linenos:
As usual, we open the file by constructing an RgbaInputFile object.
Calling ``findTypedAttribute<T>(n)`` searches the header for an
attribute with type ``T`` and name ``n``. If a matching attribute is
found, ``findTypedAttribute()`` returns a pointer to the attribute. If
the header contains no attribute with name ``n``, or if the header
contains an attribute with name ``n``, but the attribute's type is not
``T``, ``findAttribute()`` returns ``0``. Once we have pointers to the
attributes we were looking for, we can access their values by calling
the attributes' ``value()`` methods.
In this example, we handle the possibility that the attributes we want
may not exist by explicitly checking for ``0`` pointers. Sometimes it
is more convenient to rely on exceptions instead. Function
``typedAttribute()``, a variation of ``findTypedAttribute()``, also
searches the header for an attribute with a given name and type, but
if the attribute in question does not exist, ``typedAttribute()``
throws an exception rather than returning ``0``.
Note that the pointers returned by ``findTypedAttribute()`` point to
data that are part of the ``RgbaInputFile`` object. The pointers
become invalid as soon as the ``RgbaInputFile`` object is
destroyed. Therefore, the following will not work:
.. code-block::
:linenos:
void
readComments (const char fileName[], StringAttribute *&comments)
{
// error: comments pointer is invalid after this function returns
RgbaInputFile file (fileName);
comments = file.header().findTypedAttribute <StringAttribute> ("comments");
}
``readComments()`` must copy the attribute's value before it returns; for
example, like this:
.. code-block::
:linenos:
void
readComments (const char fileName[], string &comments)
{
RgbaInputFile file (fileName);
comments = file.header().typedAttribute<StringAttribute>("comments").value();
}
Luminance/Chroma and Gray-Scale Images
--------------------------------------
Writing an RGBA image file usually preserves the pixels without losing
any data; saving an image file and reading it back does not alter the
pixels' R, G, B and A values. Most of the time, lossless data storage
is exactly what we want, but sometimes file space or transmission
bandwidth are limited, and we would like to reduce the size of our
image files. It is often acceptable if the numbers in the pixels
change slightly as long as the image still looks just like the
original.
The RGBA interface in the OpenEXR library supports storing RGB data in
luminance/chroma format. The R, G, and B channels are converted into a
luminance channel, Y, and two chroma channels, RY and BY. The Y
channel represents a pixel's brightness, and the two chroma channels
represent its color. The human visual system's spatial resolution for
color is much lower than the spatial resolution for brightness. This
allows us to reduce the horizontal and vertical resolution of the RY
and BY channels by a factor of two. The visual appearance of the image
doesn't change, but the image occupies only half as much space, even
before data compression is applied. (For every four pixels, we store
four Y values, one RY value, and one BY value, instead of four R, four
G, and four B values.)
When opening a file for writing, a program can select how it wants the
pixels to be stored. The constructors for class ``RgbaOutputFile``
have an ``rgbaChannels`` argument, which determines the set of
channels in the file:
============== ========================
``WRITE_RGBA`` red, green, blue, alpha
``WRITE_YC`` luminance, chroma
``WRITE_YCA`` luminance, chroma, alpha
``WRITE_Y`` luminance only
``WRITE_YA`` luminance, alpha
============== ========================
``WRITE_Y`` and ``WRITE_YA`` provide an efficient way to store
gray-scale images. The chroma channels for a gray-scale image contain
only zeroes, so they can be omitted from the file.
When an image file is opened for reading, class ``RgbaInputFile``
automatically detects luminance/chroma images and converts the pixels
back to RGB format.
Using the General Interface for Scan Line Based Files
=====================================================
Writing an Image File
---------------------
This example demonstrates how to write an OpenEXR image file with two
channels: one channel, of type ``HALF``, is called G, and the other,
of type ``FLOAT``, is called Z. The size of the image is ``width`` by
``height`` pixels. The data for the two channels are supplied in two
separate buffers, ``gPixels`` and ``zPixels``. Within each buffer, the
pixels of each scan line are contiguous in memory.
.. literalinclude:: src/writeGZ1.cpp
:language: c++
:linenos:
On line 8, an OpenEXR header is created, and the header's display
window and data window are both set to ``(0, 0) - (width-1,
height-1)``.
Lines 9 and 10 specify the names and types of the image channels that
will be stored in the file.
Constructing an ``OutputFile`` object in line 12 opens the file with
the specified name, and stores the header in the file.
Lines 14 through 28 tell the ``OutputFile`` object how the pixel data
for the image channels are laid out in memory. After constructing a
``FrameBuffer`` object, a ``Slice`` is added for each of the image
file's channels. A ``Slice`` describes the memory layout of one
channel. The constructor for the ``Slice`` object takes four
arguments, ``type``, ``base``, ``xStride``, and ``yStride``. ``type``
specifies the pixel data type (``HALF``, ``FLOAT``, or ``UINT``); the
other three arguments define the memory address of pixel ``(x,y)`` as
.. code-block::
base + x * xStride + y * yStride.
**Note:** ``base`` is of type ``char*``, and that offsets from
``base`` are not implicitly multiplied by the size of an individual
pixel, as in the RGBA-only interface. ``xStride`` and ``yStride`` must
explicitly take the size of the pixels into account.
With the values specified in our example, the OpenEXR library computes
the address of the G channel of pixel ``(x,y)`` like this:
.. code-block::
(half*)((char*)gPixels + x * sizeof(half) * 1 + y * sizeof(half) * width)
= (half*)((char*)gPixels + x * 2 + y * 2 * width),
The address of the Z channel of pixel ``(x,y)`` is
.. code-block::
(float*)((char*)zPixels + x * sizeof(float) * 1 + y * sizeof(float) * width)
= (float*)((char*)zPixels + x * 4 + y * 4 * width).
The ``writePixels()`` call in line 29 copies the image's pixels from
memory into the file. As in the RGBA-only interface, the argument to
``writePixels()`` specifies how many scan lines are copied into the
file. (See `Writing an RGBA Image File`_.)
If the image file contains a channel for which the ``FrameBuffer`` object
has no corresponding ``Slice``, then the pixels for that channel in the
file are filled with zeroes. If the ``FrameBuffer`` object contains a
``Slice`` for which the file has no channel, then the ``Slice`` is ignored.
Returning from function ``writeGZ1()`` destroys the local ``OutputFile``
object and closes the file.
Writing a Cropped Image
-----------------------
Writing a cropped image using the general interface is analogous to
writing a cropped image using the RGBA-only interface, as shown in
`Writing a Cropped RGBA Image`_. In the file's header the data window
is set explicitly instead of being generated automatically from the
image's width and height. The number of scan lines that are stored in
the file is equal to the height of the data window, instead of the
height of the entire image. As in `Writing a Cropped RGBA Image`_, the
example code below assumes that the memory buffers for the pixels are
large enough to hold ``width`` by ``height`` pixels, but only the
region that corresponds to the data window will be stored in the
file. For smaller memory buffers with room only for the pixels in the
data window, the ``base``, ``xStride`` and ``yStride`` arguments for
the ``FrameBuffer`` object's slices would have to be adjusted
accordingly. (Again, see `Writing a Cropped RGBA Image`_.)
.. literalinclude:: src/writeGZ2.cpp
:language: c++
:linenos:
Reading an Image File
---------------------
In this example, we read an OpenEXR image file using the OpenEXR
library's general interface. We assume that the file contains two
channels, R, and G, of type ``HALF``, and one channel, Z, of type
``FLOAT``. If one of those channels is not present in the image file,
the corresponding memory buffer for the pixels will be filled with an
appropriate default value.
.. literalinclude:: src/readGZ1.cpp
:language: c++
:linenos:
First, we open the file with the specified name, by constructing an
``InputFile`` object.
Using the ``Array2D`` class template, we allocate memory buffers for
the image's R, G and Z channels. The buffers are big enough to hold
all pixels in the file's data window.
Next, we create a ``FrameBuffer`` object, which describes our buffers
to the OpenEXR library. For each image channel, we add a slice to the
``FrameBuffer``.
As usual, the slice's ``type``, ``xStride``, and ``yStride`` describe
the corresponding buffer's layout. For the R channel, pixel
``(dw.min.x, dw.min.y)`` is at address ``&rPixels[0][0]``. By setting
the ``type``, ``xStride`` and ``yStride`` of the corresponding
``Slice`` object as shown above, evaluating
.. code-block::
base + x * xStride + y * yStride
for pixel ``(dw.min.x, dw.min.y)`` produces
.. code-block::
(char*)(&rPixels[0][0] - dw.min.x - dw.min.y * width)
+ dw.min.x * sizeof (rPixels[0][0]) * 1
+ dw.min.y * sizeof (rPixels[0][0]) * width
= (char*)&rPixels[0][0]
- dw.min.x * sizeof (rPixels[0][0])
- dw.min.y * sizeof (rPixels[0][0]) * width
+ dw.min.x * sizeof (rPixels[0][0])
+ dw.min.y * sizeof (rPixels[0][0]) * width
= &rPixels[0][0] *.*
The address calculations for pixels ``(dw.min.x+1, dw.min.y)`` and
``(dw.min.x, dw.min.y+1)`` produce ``&rPixels[0][0]+1`` and
``&rPixels[0][0]+width``, which is equivalent to ``&rPixels[0][1]``
and ``&rPixels[1][0]``.
Each ``Slice`` has a ``fillValue``. If the image file does not contain
an image channel for the ``Slice``, then the corresponding memory
buffer will be filled with the ``fillValue``.
The ``Slice's`` remaining two parameters, ``xSampling`` and
``ySampling`` are used for images where some of the channels are
subsampled, for instance, the RY and BY channels in luminance/chroma
images. (See `Luminance/Chroma and Gray-Scale Images`_.) Unless an
image contains subsampled channels, ``xSampling`` and ``ySampling``
should always be set to 1. For details see header files
``ImfFrameBuffer.h`` and ``ImfChannelList.h``.
After describing our memory buffers' layout, we call ``readPixels()``
to copy the pixel data from the file into the buffers. Just as with
the RGBA-only interface, ``readPixels()`` allows random-access to the
scan lines in the file. (See `Reading an RGBA Image File in Chunks`_.)
Interleaving Image Channels in the Frame Buffer
-----------------------------------------------
Here is a variation of the previous example. We are reading an image
file, but instead of storing each image channel in a separate memory
buffer, we interleave the channels in a single buffer. The buffer is
an array of structs, which are defined like this:
.. code-block::
typedef struct GZ
{
half g;
float z;
};
The code to read the file is almost the same as before; aside from
reading only two instead of three channels, the only difference is how
``base``, ``xStride`` and ``yStride`` for the ``Slice`` s in the
``FrameBuffer`` object are computed:
.. literalinclude:: src/readGZ2.cpp
:language: c++
:linenos:
Which Channels are in a File?
-----------------------------
In functions ``readGZ1()`` and ``readGZ2()``, above, we simply assumed
that the files we were trying to read contained a certain set of
channels. We relied on the OpenEXR library to do "something
reasonable" in case our assumption was not true. Sometimes we want to
know exactly what channels are in an image file before reading any
pixels, so that we can do what we think is appropriate.
The file's header contains the file's channel list. Using iterators
similar to those in the C++ Standard Template Library, we can iterate
over the channels:
.. code-block::
:linenos:
const ChannelList &channels = file.header().channels();
for (ChannelList::ConstIterator i = channels.begin(); i != channels.end(); ++i)
{
const Channel &channel = i.channel();
// ...
}
Channels can also be accessed by name, either with the ``[]`` operator, or
with the f ``indChannel()`` function:
.. code-block::
:linenos:
const ChannelList &channels = file.header().channels();
const Channel &channel = channelList["G"];
const Channel *channelPtr = channelList.findChannel("G");
The difference between the ``[]`` operator and ``findChannel()`` function is
how errors are handled. If the channel in question is not present,
``findChannel()`` returns ``0``; the ``[]`` operator throws an exception.
Layers
------
In an image file with many channels it is sometimes useful to group the
channels into ``layers``, that is, into sets of channels that logically
belong together. Grouping channels into layers is done using a naming
convention: channel C in layer L is called L.C.
For example, a computer-generated picture of a 3D scene may contain a
separate set of R, G and B channels for the light that originated at
each one of the light sources in the scene. Every set of R, G, and B
channels is in its own layer. If the layers are called light1, light2,
light3, etc., then the full names of the channels in this image are
light1.R, light1.G, light1.B, light2.R, light2.G, light2.B, light3.R,
and so on.
Layers can be nested; for instance, light1.specular.R refers to the R
channel in the specular sub-layer of layer light1.
Channel names that do not contain a ``.``, or that contain a ``.``
only at the beginning or at the end are not considered to be part of
any layer.
Class ``ChannelList`` has two member functions that support per-layer
access to channels: ``layers()`` returns the names of all layers in a
``ChannelList``, and ``channelsInLayer()`` converts a layer name into
a pair of iterators that allows iterating over the channels in the
corresponding layer.
The following sample code prints the layers in a ``ChannelList`` and
the channels in each layer:
.. code-block::
:linenos:
const ChannelList &channels = ... ;
set<string> layerNames;
channels.layers (layerNames);
for (set<string>::const_iterator i = layerNames.begin(); i != layerNames.end(); ++i)
{
cout << "layer " << *i << endl;
ChannelList::ConstIterator layerBegin, layerEnd;
channels.channelsInLayer (*i, layerBegin, layerEnd);
for (ChannelList::ConstIterator j = layerBegin; j != layerEnd; ++j)
{
cout << "tchannel " << j.name() << endl;
}
}
Tiles, Levels and Level Modes
=============================
A single tiled OpenEXR file can hold multiple versions of an image,
each with a different resolution. Each version is called a
``level``. A tiled file's *level mode* defines how many levels are
stored in the file. There are three different level modes:
.. list-table::
:align: left
* - ``ONE_LEVEL``
- The file contains only a single, full-resolution level. A ONE_LEVEL
image file is equivalent to a scan line based file; the only difference
is that the pixels are accessed by tile instead of by scan line.
* - ``MIPMAP_LEVELS``
- The file contains multiple levels. The first level holds the image at
full resolution. Each successive level is half the resolution of the
previous level in x and y direction. The last level contains only a
single pixel. ``MIPMAP_LEVELS`` files are used for texture-mapping and
similar applications.
* - ``RIPMAP_LEVELS``
- Like ``MIPMAP_LEVELS``, but with more levels. The levels include all
combinations of reducing the resolution of the image by powers of two
independently in x and y direction. Used for texture mapping, like
``MIPMAP_LEVELS``. The additional levels in a ``RIPMAP_LEVELS`` file can
help to accelerate anisotropic filtering during texture lookups.
In ``MIPMAP_LEVELS`` and ``RIPMAP_LEVELS`` mode, the size (width or height)
of each level is computed by halving the size of the level with the next
higher resolution. If the size of the higher-resolution level is odd,
then the size of the lower-resolution level must be rounded up or down
in order to avoid arriving at a non-integer width or height. The
rounding direction is determined by the file's *level size rounding
mode*.
Within each level, the pixels of the image are stored in a
two-dimensional array of tiles. The tiles in an OpenEXR file can be any
rectangular shape, but all tiles in a file have the same size. This
means that lower-resolution levels contain fewer, rather than smaller,
tiles.
An OpenEXR file's level mode and rounding mode, and the size of the
tiles are stored in an attribute in the file header. The value of this
attribute is a ``TileDescription`` object:
.. code-block::
:linenos:
enum LevelMode
{
ONE_LEVEL,
MIPMAP_LEVELS,
RIPMAP_LEVELS
};
enum LevelRoundingMode
{
ROUND_DOWN,
ROUND_UP
};
class TileDescription
{
public:
unsigned int xSize; // size of a tile in the x dimension
unsigned int ySize; // size of a tile in the y dimension
LevelMode mode;
LevelRoundingMode roundingMode;
... // (methods omitted)
};
Using the RGBA-only Interface for Tiled Files
=============================================
Writing a Tiled RGBA Image File with One Resolution Level
---------------------------------------------------------
Writing a tiled RGBA image with a single level is easy:
.. literalinclude:: src/writeTiledRgbaONE1.cpp
:language: c++
:linenos:
Opening the file and defining the pixel data layout in memory are done
in almost the same way as for scan line based files:
Construction of the ``TiledRgbaOutputFile`` object, on line 7, creates
an OpenEXR header, sets the header's attributes, opens the file with
the specified name, and stores the header in the file. The header's
display window and data window are both set to ``(0, 0) - (width-1,
height-1)``. The size of each tile in the file will be ``tileWidth``
by ``tileHeight`` pixels. The channel list contains four channels, R,
G, B, and A, of type ``HALF``.
Line 13 specifies how the pixel data are laid out in memory. The
arithmetic involved in calculating the memory address of a specific
pixel is the same as for the scan line based interface. (See `Writing
an RGBA Image File`_). We assume that the ``pixels`` pointer points to
an array of `width*height` pixels, which contains the entire image.
Line 14 copies the pixels into the file. The ``TiledRgbaOutputFile``\
's ``writeTiles()`` method takes four arguments, ``dxMin``, ``dyMin``,
``dxMax`` and ``dyMax``; ``writeTiles()`` writes all tiles that have
tile coordinates ``(dx,dy)``, where ``dxMin`` ≤ ``dx`` ≤ ``dxMax`` and
``dyMin`` ≤ ``dy`` ≤ ``dyMax``. The ``numXTiles()`` method returns the
number of tiles in the x direction, and similarly, the ``numYTiles()``
method returns the number of tiles in the y direction. Thus,
.. code-block::
out.writeTiles (0, out.numXTiles() - 1, 0, out.numYTiles() - 1);
writes the entire image.
This simple method works well when enough memory is available to
allocate a frame buffer for the entire image. When allocating a frame
buffer for the whole image is not desirable, for example because the
image is very large, a smaller frame buffer can be used. Even a frame
buffer that can hold only a single tile is sufficient, as demonstrated
in the following example:
.. literalinclude:: src/writeTiledRgbaONE2.cpp
:language: c++
:linenos:
On line 13 we allocate a ``pixels`` array with
``tileWidtf*tileHeight`` elements, which is just enough for one
tile. Line 18 computes the data window range for each tile, that is,
the set of pixel coordinates covered by the tile. The
``generatePixels()`` function, on line 20, fills the ``pixels`` array
with one tile's worth of image data. The same ``pixels`` array is
reused for all tiles. We must call ``setFrameBuffer()``, on line 22,
before writing each tile so that the pixels in the array are accessed
properly in the ``writeTile()`` call on line 26. Again, the address
arithmetic to access the pixels is the same as for scan line based
files. The values for the ``base``, ``xStride``, and ``yStride``
arguments to the ``setFrameBuffer()`` call must be chosen so that
evaluating the expression
.. code-block::
base + x * xStride + y * yStride
produces the address of the pixel with coordinates ``(x,y)``.
Writing a Tiled RGBA Image File with Mipmap Levels
--------------------------------------------------
In order to store a multi-resolution image in a file, we can allocate a
frame buffer large enough for the highest-resolution level, ``(0,0)``, and
reuse it for all levels:
.. literalinclude:: src/writeTiledRgbaMIP1.cpp
:linenos:
The main difference here is the use of ``MIPMAP_LEVELS`` on line 6 for
the ``TiledRgbaOutputFile`` constructor. This signifies that the file
will contain multiple levels, each level being a factor of 2 smaller
in both dimensions than the previous level. Mipmap images contain
``n`` levels, with level numbers
(0,0), (1,1), ... (n-1,n-1),
where
n = floor (log (max (width, height)) / log (2)) + 1
if the level size rounding mode is ``ROUND_DOWN``, or
n = ceil (log (max (width, height)) / log (2)) + 1
if the level size rounding mode is ``ROUND_UP``. Note that even though
level numbers are pairs of integers, ``(lx,ly)``, only levels where
``lx`` equals ``ly`` are used in ``MIPMAP_LEVELS`` files.
Line 13 allocates a ``pixels`` array with ``width`` by ``height``
pixels, big enough to hold the highest-resolution level.
In order to store all tiles in the file, we must loop over all levels
in the image (line 17). ``numLevels()`` returns the number of levels,
``n``, in our mipmapped image. Since the tile sizes remain the same in
all levels, the number of tiles in both dimensions varies between
levels. ``numXTiles()`` and ``numYTiles()`` take a level number as an
optional argument, and return the number of tiles in the x or y
direction for the corresponding level. Line 19 fills the ``pixels``
array with appropriate data for each level, and line 21 stores the
pixel data in the file.
As with ``ONE_LEVEL`` images, we can choose to only allocate a frame
buffer for a single tile and reuse it for all tiles in the image:
.. literalinclude:: src/writeTiledRgbaMIP2.cpp
:language: c++
:linenos:
The structure of this code is the same as for writing a ``ONE_LEVEL``
image using a tile-sized frame buffer, but we have to loop over more
tiles. Also, ``dataWindowForTile()`` takes an additional level
argument to determine the pixel range for the tile at the specified
level.
Writing a Tiled RGBA Image File with Ripmap Levels
--------------------------------------------------
The ripmap level mode allows for storing all combinations of reducing
the resolution of the image by powers of two independently in both
dimensions. Ripmap files contains ``nx*ny`` levels, with level
numbers:
(0, 0), (1, 0), ... (nx-1, 0),
(0, 1), (1, 1), ... (nx-1, 1),
...
(0,ny-1), (1,ny-1), ... (nx-1,ny-1)
where
nx = floor (log (width) / log (2)) + 1
ny = floor (log (height) / log (2)) + 1
if the level size rounding mode is ``ROUND_DOWN``, or
nx = ceil (log (width) / log (2)) + 1
ny = ceil (log (height) / log (2)) + 1
if the level size rounding mode is ``ROUND_UP``.
With a frame buffer that is large enough to hold level ``(0,0)``, we can
write a ripmap file like this:
.. literalinclude:: src/writeTiledRgbaRIP1.cpp
:linenos:
As for ``ONE_LEVEL`` and ``MIPMAP_LEVELS`` files, the frame buffer
doesn't have to be large enough to hold a whole level. Any frame
buffer big enough to hold at least a single tile will work.
Reading a Tiled RGBA Image File
-------------------------------
Reading a tiled RGBA image file is done similarly to writing one:
.. literalinclude:: src/readTiledRgba1.cpp
:language: c++
:linenos:
First we need to create a ``TiledRgbaInputFile`` object for the given
file name. We then retrieve information about the data window in order
to create an appropriately sized frame buffer, in this case large
enough to hold the whole image at level ``(0,0)``. After we set the
frame buffer, we read the tiles from the file.
This example only reads the highest-resolution level of the image. It
can be extended to read all levels, for multi-resolution images, by
also iterating over all levels within the image, analogous to the
examples in `Writing a Tiled RGBA Image File with Mipmap Levels`_, and
`Writing a Tiled RGBA Image File with Ripmap Levels`_.
Using the General Interface for Tiled Files
===========================================
Writing a Tiled Image File
--------------------------
This example is a variation of the one in `Writing an Image File`_. We
are writing a ``ONE_LEVEL`` image file with two channels, G, and Z, of
type ``HALF``, and ``FLOAT`` respectively, but here the file is tiled
instead of scan line based:
.. literalinclude:: src/writeTiled1.cpp
:language: c++
:linenos:
As one would expect, the code here is very similar to the code in
`Writing an Image File`_. The file's header is created in line 1,
while lines 2 and 3 specify the names and types of the image channels
that will be stored in the file. An important addition is line 4,
where we define the size of the tiles and the level mode. In this
example we use ``ONE_LEVEL`` for simplicity. Line 5 opens the file and
writes the header. Lines 6 through 17 tell the ``TiledOutputFile``
object the location and layout of the pixel data for each
channel. Finally, line 18 stores the tiles in the file.
Reading a Tiled Image File
--------------------------
Reading a tiled file with the general interface is virtually identical to
reading a scan line based file, as shown in `Interleaving Image Channels in the
Frame Buffer`_; only the last three lines are different. Instead of reading all
scan lines at once with a single function call, here we must iterate over all
tiles we want to read.
.. literalinclude:: src/readTiled1.cpp
:language: c++
:linenos:
In this example we assume that the file we want to read contains two
channels, G and Z, of type ``HALF`` and ``FLOAT`` respectively. If the
file contains other channels, we ignore them. We only read the
highest-resolution level of the image. If the input file contains more
levels (``MIPMAP_LEVELS`` or ``MIPMAP_LEVELS``), we can access the
extra levels by calling a four-argument version of the ``readTile()``
function:
.. code-block::
in.readTile (tileX, tileY, levelX, levelY);
or by calling a six-argument version of ``readTiles()``:
.. code-block::
in.readTiles (tileXMin, tileXMax, tileYMin, tileYMax, levelX, levelY);
Deep Data Files
===============
Writing a Deep Scan Line File
-----------------------------
This example creates an deep scan line file with two channels. It
demonstrates how to write a deep scan line file with two channels:
1. type ``FLOAT``, is called Z, and is used for storing sample depth, and
2. type ``HALF``, is called A and is used for storing sample opacity.
The size of the image is ``width`` by ``height`` pixels.
.. literalinclude:: src/writeDeepScanlineFile.cpp
:language: c++
:linenos:
The interface for deep scan line files is similar to scan line
files. We added two new classes to deal with deep data:
``DeepFrameBuffer`` and ``DeepSlice``. ``DeepFrameBuffer`` only
accepts ``DeepSlice`` as its input, except that it accepts ``Slice``
for sample count slice. The first difference we see from the previous
version is:
.. code-block::
header.setType(DEEPSCANLINE);
where we set the type of the header to a predefine string
``DEEPSCANLINE``, then we insert a sample count slice using
``insertSampleCountSlice()``. After that, we insert a ``DeepSlice`` with
deep z data. Notice that deep slices have three strides, one more than
non-deep slices. The first two strides are used for the pointers in the
array. Because the memory space for ``Array2D`` is contiguous, we can get
the strides easily. The third stride is used for pixel samples. Because
the data type is float (and we are not interleaving), the stride should
be ``sizeof(float)``. If we name the stride for deep data
samples ``sampleStride``, then the memory address of the i-th sample of
this channel in pixel ``(x, y)`` is
.. code-block::
base +
x * xStride +
y * yStride +
i * sampleStride
Because we may not know the data until we are going to write it, the
deep data file must support postponed initialization, as shown in the
example code. Another approach would be to prepare all the data first,
and then write it all out at once.
Once the slices have been inserted, we get the sample count for each
pixel, via a user-supplied ``getPixelSampleCount()`` function, and
dynamically allocate memory for the Z and A channels. We then write to
file in a line-by-line fashion and finally free the the intermediate
data structures.
Reading a Deep Scan Line File
-----------------------------
An example of reading a deep scan line file created by previous code.
.. literalinclude:: src/readDeepScanlineFile.cpp
:language: c++
:linenos:
The interface for deep scan line files is similar to scan line files.
The main the difference is we use the sample count slice and deep data
slices. To do this, we added a new method to read the sample count table
from the file:
.. code-block::
file.readPixelSampleCounts(dataWindow.min.y, dataWindow.max.y);
This method reads all pixel sample counts in the range
``[dataWindow.min.y, dataWindow.max.y]``, and stores the data to sample
count slice in framebuffer.
``ReadPixels()`` supports for postponed memory allocation.
Writing a Deep Tiled File
-------------------------
This example creates an deep tiled file with two channels. It
demonstrates how to write a deep tiled file with two channels:
1. type ``FLOAT``, is called Z, and is used for storing sample depth, and
2. type ``HALF``, is called A and is used for storing sample opacity.
The size of the image is ``width`` by ``height`` pixels.
.. literalinclude:: src/writeDeepTiledFile.cpp
:language: c++
:linenos:
Here, getSampleCountForTile is a user-supplied function that sets each
item in sampleCount array to the correct sampleCount for each pixel in
the tile, and getSampleDataForTile is a user-supplied function that
set the pointers in dataZ and dataA arrays to point to the correct
data
The interface for deep tiled files is similar to tiled files. The
differences are:
- we set the type of the header to ``DEEPTILE``
- we use ``insertSampleCountSlice()`` to set sample count slice, and
- we use ``DeepSlice`` instead of ``Slice`` to provide three strides needed
by the library.
Also, we support postponed initialization.
Reading a Deep Tiled File
-------------------------
An example of reading a deep tiled file created by code explained in the
`Writing a Deep Tiled File`_ section.
.. literalinclude:: src/readDeepTiledFile.cpp
:linenos:
This code demonstrates how to read the first level of a deep tiled
file created by code explained in the `Writing a Deep Tiled File`_
section. The interface for deep tiled files is similar to tiled
files. The differences are:
- we use ``insertSampleCountSlice()`` to set sample count slice
- we use ``DeepSlice`` instead of ``Slice`` to provide three strides needed
by the library, and
- we use ``readPixelSampleCounts()`` to read in pixel sample counts into
array.
Also we support postponed memory allocation.
In this example, entries in dataZ and dataA have been allocated by the
'new' calls must be deleted after use.
Threads
=======
Library Thread-Safety
---------------------
The OpenEXR library is thread-safe. In a multithreaded application
program, multiple threads can concurrently read and write distinct
OpenEXR files. In addition, accesses to a single shared file by
multiple application threads are automatically serialized. In other
words, each thread can independently create, use and destroy its own
input and output file objects. Multiple threads can also share a
single input or output file. In the latter case the OpenEXR library
uses mutual exclusion to ensure that only one thread at a time can
access the shared file.
Multithreaded I/O
-----------------
The OpenEXR library supports multithreaded file input and output where
the library creates its own worker threads that are independent of the
application program's threads. When an application thread calls
``readPixels()``, ``readTiles()``, ``writePixels()`` or
``writeTiles()`` to read or write multiple scan lines or tiles at
once, the library's worker threads process the tiles or scanlines in
parallel.
During startup, the application program must enable multithreading by
calling function ``setGlobalThreadCount()``. This tells the OpenEXR
library how many worker threads it should create. (As a special case,
setting the number of worker threads to zero reverts to
single-threaded operation; reading and writing image files happens
entirely in the application thread that calls the OpenEXR library.)
The application program should read or write as many scan lines or
tiles as possible in each call to ``readPixels()``, ``readTiles()``,
``writePixels()`` or ``writeTiles()``. This allows the library to
break up the work into chunks that can be processed in
parallel. Ideally the application reads or writes the entire image
using a single read or write call. If the application reads or writes
the image one scan line or tile at a time, the library reverts to
single-threaded file I/O.
The following function writes an RGBA file using four concurrent
worker threads:
.. literalinclude:: src/writeRgbaMT.cpp
:language: c++
:linenos:
Except for the call to ``setGlobalThreadCount()``, function ``writeRgbaMT()`` is
identical to function ``writeRgba1()`` in `Writing an RGBA Image File`_, but on
a computer with multiple processors ``writeRgbaMT()`` writes files significantly
faster than ``writeRgba1()``.
Multithreaded I/O, Multithreaded Application Program
----------------------------------------------------
Function ``setGlobalThreadCount()`` creates a global pool of worker
threads inside the OpenEXR library. If an application program has
multiple threads, and those threads read or write several OpenEXR
files at the same time, then the worker threads must be shared among
the application threads. By default each file will attempt to use the
entire worker thread pool for itself. If two files are read or written
simultaneously by two application threads, then it is possible that
all worker threads perform I/O on behalf of one of the files, while
I/O for the other file is stalled.
In order to avoid this situation, the constructors for input and
output file objects take an optional ``numThreads`` argument. This
gives the application program more control over how many threads will
be kept busy reading or writing a particular file.
For example, we may have an application program that runs on a
four-processor computer. The program has one thread that reads files
and another one that writes files. We want to keep all four processors
busy, and we want to split the processors evenly between input and
output. Before creating the input and output threads, the application
instructs the OpenEXR library to create four worker threads:
.. code-block::
// main, before application threads are created:
setGlobalThreadCount (4);
In the input and output threads, input and output files are opened
with ``numThreads`` set to 2:
.. code-block::
// application's input thread
InputFile in (fileName, 2);
...
// application's output thread
OutputFile out (fileName, header, 2);
...
This ensures that file input and output in the application's two
threads can proceed concurrently, without one thread stalling the
other's I/O.
An alternative approach for thread management of multithreaded
applications is provided for deep scanline input files. Rather than
calling ``setFrameBuffer()``, the host application may call
``rawPixelData()`` to load a chunk of scanlines into a
host-application managed memory store, then pass a DeepFrameBuffer
object and the raw data to ``readPixelSampleCounts()`` and
``readPixels()``. Only the call to rawPixelData blocks; decompressing
the underlying data and copying it to the framebuffer will happen on
the host application's threads independently. This strategy is
generally ````less efficient```` than reading multiple scanlines at
the same time and allowing OpenEXR's thread management to decode the
file, but may prove effective when the host application has many
threads available, cannot avoid accessing scanlines in a random order
and wishes to avoid caching an entire uncompressed image. For more
details, refer to the inline comments in ImfDeepScanLineInputFile.h
Low-Level I/O
=============
Custom Low-Level File I/O
-------------------------
In all of the previous file reading and writing examples, we were
given a file name, and we relied on the constructors for our input
file or output file objects to open the file. In some contexts, for
example, in a plugin for an existing application program, we may have
to read from or write to a file that has already been opened. The
representation of the open file as a C or C++ data type depends on the
application program and on the operating system.
At its lowest level, the OpenEXR library performs file I/O via objects
of type ``IStream`` and ``OStream``. ``IStream`` and ``OStream`` are
abstract base classes. The OpenEXR library contains two derived
classes, ``StdIFStream`` and ``StdOFStream``, that implement reading
from ``std::ifstream`` and writing to ``std::ofstream`` objects. An
application program can implement alternative file I/O mechanisms by
deriving its own classes from ``Istream`` and ``Ostream``. This way,
OpenEXR images can be stored in arbitrary file-like objects, as long
as it is possible to support read, write, seek and tell operations
with semantics similar to the corresponding ``std::ifstream`` and
``std::ofstream`` methods.
For example, assume that we want to read an OpenEXR image from a C
stdio file (of type ``FILE``) that has already been opened. To do
this, we derive a new class, ``C_IStream``, from ``IStream``. The
declaration of class ``IStream`` looks like this:
.. code-block::
:linenos:
class IStream
{
public:
virtual ~IStream ();
virtual bool read (char c[], int n) = 0;
virtual uint64_t tellg () = 0;
virtual void seekg (uint64_t pos) = 0;
virtual void clear ();
const char * fileName () const;
virtual bool isMemoryMapped () const;
virtual char * readMemoryMapped (int n);
protected:
IStream (const char fileName[]);
private:
...
};
Our derived class needs a public constructor, and it must override four
methods:
.. code-block::
:linenos:
class C_IStream: public IStream
{
public:
C_IStream (FILE *file, const char fileName[]):
IStream (fileName), _file (file) {}
virtual bool read (char c[], int n);
virtual uint64_t tellg ();
virtual void seekg (uint64_t pos);
virtual void clear ();
private:
FILE * _file;
};
``read(c,n)`` reads ``n`` bytes from the file, and stores them in
array ``c``. If reading hits the end of the file before ``n`` bytes
have been read, or if an I/O error occurs, ``read(c,n)`` throws an
exception. If ``read(c,n)`` hits the end of the file after reading
``n`` bytes, it returns ``false``, otherwise it returns ``true``:
.. code-block::
:linenos:
bool
C_IStream::read (char c[], int n)
{
if (n != fread (c, 1, n, _file))
{
// fread() failed, but the return value does not distinguish
// between I/O errors and end of file, so we call ferror() to
// determine what happened.
if (ferror (_file))
Iex::throwErrnoExc();
else
throw Iex::InputExc ("Unexpected end of file.");
}
return !feof (_file);
}
``tellg()`` returns the current reading position, in bytes, from the
beginning of the file. The next ``read()`` call will begin reading at
the indicated position:
.. code-block::
:linenos:
uint64_t
C_IStream::tellg ()
{
return ftell (_file);
}
``seekg(pos)`` sets the current reading position to ``pos`` bytes from
the beginning of the file:
.. code-block::
:linenos:
void
C_IStream::seekg (uint64_t pos)
{
clearerr (_file);
fseek (_file, pos, SEEK_SET);
}
``clear()`` clears any error flags that may be set on the file after a
``read()`` or ``seekg()`` operation has failed:
.. code-block::
:linenos:
void
C_IStream::clear ()
{
clearerr (_file);
}
In order to read an RGBA image from an open C stdio file, we first
make a ``C_IStream`` object. Then we create an ``RgbaInputFile``,
passing the ``C_IStream`` instead of a file name to the
constructor. After that, we read the image as usual (see `Reading an
RGBA Image File`_):
.. literalinclude:: src/readRgbaFILE.cpp
:language: c++
:linenos:
Memory-Mapped I/O
-----------------
When the OpenEXR library reads an image file, pixel data are copied
several times on their way from the file to the application's frame
buffer. For compressed files, the time spent copying is usually not
significant when compared to how long it takes to uncompress the data.
However, when uncompressed image files are being read from a fast file
system, it may be advantageous to eliminate one or two copy operations
by using memory-mapped I/O.
Memory-mapping establishes a relationship between a file and a
program's virtual address space, such that from the program's point of
view the file looks like an array of type ``char``. The contents of
the array match the data in the file. This allows the program to
access the data in the file directly, bypassing any copy operations
associated with reading the file via a C++ ``std::ifstream`` or a C
``FILE``.
Classes derived from ``IStream`` can optionally support memory-mapped
input. In order to do this, a derived class must override two virtual
functions, ``isMemoryMapped()`` and ``readMemoryMapped()``, in
addition to the functions needed for regular, non-memory-mapped input:
.. code-block::
:linenos:
class MemoryMappedIStream: public IStream
{
public:
MemoryMappedIStream (const char fileName[]);
virtual ~MemoryMappedIStream ();
virtual bool isMemoryMapped () const;
virtual char * readMemoryMapped (int n);
virtual bool read (char c[], int n);
virtual uint64_t tellg ();
virtual void seekg (uint64_t pos);
private:
char * _buffer;
uint64_t _fileLength;
uint64_t _readPosition;
};
The constructor for class ``MemoryMappedIStream`` maps the contents of
the input file into the program's address space. Memory mapping is not
portable across operating systems. The example shown here uses the
POSIX ``mmap()`` system call. On Windows files can be memory-mapped by
calling ``CreateFileMapping()`` and ``MapViewOfFile()``:
.. code-block::
:linenos:
MemoryMappedIStream::MemoryMappedIStream (const char fileName[])
: IStream (fileName),
_buffer (0),
_fileLength (0),
_readPosition (0)
{
int file = open (fileName, O_RDONLY);
if (file < 0)
THROW_ERRNO ("Cannot open file \"" << fileName << "\".");
struct stat stat;
fstat (file, &stat);
_fileLength = stat.st_size;
_buffer = (char *) mmap (0, _fileLength, PROT_READ, MAP_PRIVATE, file, 0);
close (file);
if (_buffer == MAP_FAILED)
THROW_ERRNO ("Cannot memory-map file \"" << fileName << "\".");
}
The destructor frees the address range associated with the file by
un-mapping the file. The POSIX version shown here uses ``munmap()``. A
Windows version would call ``UnmapViewOfFile()`` and
``CloseHandle()``:
.. code-block::
:linenos:
MemoryMappedIStream::~MemoryMappedIStream ()
{
munmap (_buffer, _fileLength);
}
Function ``isMemoryMapped()`` returns ``true`` to indicate that
memory-mapped input is supported. This allows the OpenEXR library to
call ``readMemoryMapped()`` instead of ``read()``:
.. code-block::
:linenos:
bool
MemoryMappedIStream::isMemoryMapped () const
{
return true;
}
``readMemoryMapped()`` is analogous to ``read()``, but instead of
copying data into a buffer supplied by the caller,
``readMemoryMapped()`` returns a pointer into the memory-mapped file,
thus avoiding the copy operation:
.. code-block::
:linenos:
char *
MemoryMappedIStream::readMemoryMapped (int n)
{
if (_readPosition >= _fileLength)
throw Iex::InputExc ("Unexpected end of file.");
if (_readPosition + n > _fileLength)
throw Iex::InputExc ("Reading past end of file.");
char *data = _buffer + _readPosition;
_readPosition += n;
return data;
}
The ``MemoryMappedIStream`` class must also implement the regular ``read()``
function, as well as ``tellg()`` and ``seekg()``:
.. code-block::
:linenos:
bool
MemoryMappedIStream::read (char c[], int n)
{
if (_readPosition >= _fileLength)
throw Iex::InputExc ("Unexpected end of file.");
if (_readPosition + n > _fileLength)
throw Iex::InputExc ("Reading past end of file.");
memcpy (c, _buffer + _readPosition, n);
_readPosition += n;
return _readPosition < _fileLength;
}
uint64_t
MemoryMappedIStream::tellg ()
{
return _readPosition;
}
void
MemoryMappedIStream::seekg (uint64_t pos)
{
_readPosition = pos;
}
Class ``MemoryMappedIStream`` does not need a ``clear()``
function. Since the memory-mapped file has no error flags that need to
be cleared, the ``clear()`` method provided by class ``IStream``,
which does nothing, can be re-used.
Memory-mapping a file can be faster than reading the file via a C++
``std::istream`` or a C ``FILE``, but the extra speed comes at a
cost. A large memory-mapped file can occupy a significant portion of a
program's virtual address space. In addition, mapping and un-mapping
many files of varying sizes can severely fragment the address
space. After a while, the program may be unable to map any new files
because there is no contiguous range of free addresses that would be
large enough hold a file, even though the total amount of free space
would be sufficient. An application program that uses memory-mapped
I/O should manage its virtual address space in order to avoid
fragmentation. For example, the program can reserve several address
ranges, each one large enough to hold the largest file that the
program expects to read. The program can then explicitly map each new
file into one of the reserved ranges, keeping track of which ranges
are currently in use.
Miscellaneous
=============
Is this an OpenEXR File?
------------------------
Sometimes we want to test quickly if a given file is an OpenEXR file.
This can be done by looking at the beginning of the file: The first
four bytes of every OpenEXR file contain the 32-bit integer "magic
number" 20000630 in little-endian byte order. After reading a file's
first four bytes via any of the operating system's standard file I/O
mechanisms, we can compare them with the magic number by explicitly
testing if the bytes contain the values ``0x76``, ``0x2f``, ``0x31``,
and ``0x01``.
Given a file name, the following function returns ``true`` if the
corresponding file exists, is readable, and contains an OpenEXR image:
.. code-block::
:linenos:
bool
isThisAnOpenExrFile (const char fileName[])
{
std::ifstream f (fileName, std::ios_base::binary);
char b[4];
f.read (b, sizeof (b));
return !!f && b[0] == 0x76 && b[1] == 0x2f && b[2] == 0x31 && b[3] == 0x01;
}
Using this function does not require linking with the OpenEXR library.
Programs that are linked with the OpenEXR library can determine if a
given file is an OpenEXR file by calling one of the following
functions, which are part of the library:
.. code-block::
:linenos:
bool isOpenExrFile (const char fileName[], bool &isTiled);
bool isOpenExrFile (const char fileName[]);
bool isTiledOpenExrFile (const char fileName[]);
bool isOpenExrFile (IStream &is, bool &isTiled);
bool isOpenExrFile (IStream &is);
bool isTiledOpenExrFile (IStream &is);
Is this File Complete?
----------------------
Sometimes we want to test if an OpenEXR file is complete. The file may
be missing pixels, either because writing the file is still in
progress or because writing was aborted before the last scan line or
tile was stored in the file. Of course, we could test if a given file
is complete by attempting to read the entire file, but the input file
classes in the OpenEXR library have an ``isComplete()`` method that is
faster and more convenient.
The following function returns ``true`` or ``false``, depending on
whether a given OpenEXR file is complete or not:
.. code-block::
:linenos:
bool
isComplete (const char fileName[])
{
InputFile in (fileName);
return in.isComplete();
}
Preview Images
--------------
Graphical user interfaces for selecting image files often represent
files as small ``preview`` or ``thumbnail`` images. In order to make loading
and displaying the preview images fast, OpenEXR files support storing
preview images in the file headers.
A preview image is an attribute whose value is of type
``PreviewImage``. A ``PreviewImage`` object is an array of pixels of
type ``PreviewRgba``. A pixel has four components, ``r``, ``g``, ``b``
and ``a``, of type *unsigned char*, where ``r``, ``g`` and ``b`` are
the pixel's red, green and blue components, encoded with a gamma of
2.2. ``a`` is the pixel's alpha channel; ``r``, ``g`` and ``b`` should
be premultiplied by ``a``. On a typical display with 8-bits per
component, the preview image can be shown by simply loading the ``r``,
``g`` and ``b`` components into the display's frame buffer. (No gamma
correction or tone mapping is required.)
The code fragment below shows how to test if an OpenEXR file has a
preview image, and how to access a preview image's pixels:
.. code-block::
:linenos:
RgbaInputFile file (fileName);
if (file.header().hasPreviewImage())
{
const PreviewImage &preview = file.header().previewImage();
for (int y = 0; y < preview.height(); ++y)
{
for (int x = 0; x < preview.width(); ++x)
{
const PreviewRgba &pixel = preview.pixel (x, y);
...
}
}
}
Writing an OpenEXR file with a preview image is shown in the following
example. Since the preview image is an attribute in the file's header,
it is entirely separate from the main image. Here the preview image is
a smaller version of the main image, but this is not required; in some
cases storing an easily recognizable icon may be more
appropriate. This example uses the RGBA-only interface to write a scan
line based file, but preview images are also supported for files that
are written using the general interface, and for tiled files.
.. literalinclude:: src/writeRgbaWithPreview1.cpp
:language: c++
:linenos:
Lines 7 through 12 generate the preview image. Line 5 creates a header
for the image file. Line 16 converts the preview image into a
``PreviewImage`` attribute, and adds the attribute to the
header. Lines 18 through 20 store the header (with the preview image)
and the main image in a file.
Function ``makePreviewImage()``, called on line 12, generates the
preview image by scaling the main image down to one eighth of its
original width and height:
.. literalinclude:: src/makePreviewImage.cpp
:language: c++
:linenos:
To make this example easier to read, scaling the image is done by just
sampling every eighth pixel of every eighth scan line. This can lead
to aliasing artifacts in the preview image; for a higher-quality
preview image, the main image should be lowpass-filtered before it is
subsampled.
Function ``makePreviewImage()`` calls ``gamma()`` to convert the
floating-point red, green, and blue components of the sampled main
image pixels to ``unsigned char`` values. ``gamma()`` is a simplified
version of what the exrdisplay program does in order to show an
OpenEXR image's floating-point pixels on the screen (for details, see
exrdisplay's source code):
.. code-block::
:linenos:
unsigned char
gamma (float x)
{
x = pow (5.5555f * max (0.f, x), 0.4545f) * 84.66f;
return (unsigned char) clamp (x, 0.f, 255.f);
}
``makePreviewImage()`` converts the pixels' alpha component to
unsigned char by by linearly mapping the range ``[0.0, 1.0]`` to
``[0,255]``.
Some programs write image files one scan line or tile at a time, while
the image is being generated. Since the image does not yet exist when
the file is opened for writing, it is not possible to store a preview
image in the file's header at this time (unless the preview image is
an icon that has nothing to do with the main image). However, it is
possible to store a blank preview image in the header when the file is
opened. The preview image can then be updated as the pixels become
available. This is demonstrated in the following example:
.. literalinclude:: src/writeRgbaWithPreview2.cpp
:language: c++
:linenos:
Environment Maps
----------------
An environment map is an image that represents an omnidirectional view
of a three-dimensional scene as seen from a particular 3D location.
Every pixel in the image corresponds to a 3D direction, and the data
stored in the pixel represent the amount of light arriving from this
direction. In 3D rendering applications, environment maps are often
used for image-based lighting techniques that approximate how objects
are illuminated by their surroundings. Environment maps with enough
dynamic range to represent even the brightest light sources in the
environment are sometimes called "light probe images."
In an OpenEXR file, an environment map is stored as a rectangular
pixel array, just like any other image, but an attribute in the file
header indicates that the image is an environment map. The attribute's
value, which is of type ``Envmap``, specifies the relation between 2D
pixel locations and 3D directions. ``Envmap`` is an enumeration
type. Two values are possible:
.. list-table::
:align: left
* - ``ENVMAP_LATLONG``
- **Latitude-Longitude Map** The environment is projected onto
the image using polar coordinates (latitude and longitude). A
pixel's x coordinate corresponds to its longitude, and the y
coordinate corresponds to its latitude. The pixel in the upper
left corner of the data window has latitude +π/2 and longitude
+π; the pixel in the lower right corner has latitude -π/2 and
longitude -π.
In 3D space, latitudes -π/2 and +π/2 correspond to the negative
and positive y direction. Latitude 0, longitude 0 points in the
positive z direction; latitude 0, longitude π/2 points in the
positive x direction.
* -
- For a latitude-longitude map, the size of the data window
should be 2×N by N pixels (width by height), where N can be any
integer greater than 0.
.. image:: images/latlong.png
* - ``ENVMAP_CUBE``
- **Cube Map** The environment is projected onto the six faces
of an axis-aligned cube. The cube's faces are then arranged in
a 2D image as shown below.
* -
- For a cube map, the size of the data window should be N by 6×N
pixels (width by height), where N can be any integer greater
than 0.
.. image:: images/envcube.png
**Note:** Both kinds of environment maps contain redundant pixels: In
a latitude-longitude map, the top row and the bottom row of pixels
correspond to the map's north pole and south pole (latitudes +π/2 and
-π/2). In each of those two rows all pixels are the same. The leftmost
column and the rightmost column of pixels both correspond to the
meridian with longitude +π (or, equivalently, -π). The pixels in the
leftmost column are repeated in the rightmost column. In a cube-face
map, the pixels along each edge of a face are repeated along the
corresponding edge of the adjacent face. The pixel in each corner of a
face is repeated in the corresponding corners of the two adjacent
faces.
The following code fragment tests if an OpenEXR file contains an
environment map, and if it does, which kind:
.. code-block::
:linenos:
RgbaInputFile file (fileName);
if (hasEnvmap (file.header()))
{
Envmap type = envmap (file.header());
...
}
For each kind of environment map, the OpenEXR library provides a set
of routines that convert from 3D directions to 2D floating-point pixel
locations and back. Those routines are useful in application programs
that create environment maps and in programs that perform map lookups.
For details, see the header file ``ImfEnvmap.h``.
Compression
-----------
Data written to OpenEXR files can be compressed using one of several
compression algorithms.
To specify the compression algorithm, set the ``compression()`` value
on the ``Header`` object:
.. code-block::
:linenos:
Header header (width, height);
header.channels().insert ("G", Channel (HALF));
header.channels().insert ("Z", Channel (FLOAT));
header.compression() = ZIP_COMPRESSION;
Supported compression types are:
+-------------------+------------------------------------------------+
| RLE_COMPRESSION | run length encoding |
+-------------------+------------------------------------------------+
| ZIPS_COMPRESSION | zlib compression, one scan line at a time |
+-------------------+------------------------------------------------+
| ZIP_COMPRESSION | zlib compression, in blocks of 16 scan lines |
+-------------------+------------------------------------------------+
| PIZ_COMPRESSION | piz-based wavelet compression |
+-------------------+------------------------------------------------+
| PXR24_COMPRESSION | lossy 24-bit float compression |
+-------------------+------------------------------------------------+
| B44_COMPRESSION | lossy 4-by-4 pixel block compression, |
| | fixed compression rate |
+-------------------+------------------------------------------------+
| B44A_COMPRESSION | lossy 4-by-4 pixel block compression, |
| | flat fields are compressed more |
+-------------------+------------------------------------------------+
| DWAA_COMPRESSION | lossy DCT based compression, in blocks of |
| | 32 scanlines. More efficient for partial |
| | buffer access. |
+-------------------+------------------------------------------------+
| DWAB_COMPRESSION | lossy DCT based compression, in blocks of 256 |
| | scanlines. More efficient space-wise and |
| | faster to decode full frames than |
| | ``DWAA_COMPRESSION``. |
+-------------------+------------------------------------------------+
``ZIP_COMPRESSION`` and ``DWA`` compression compress to a
user-controllable compression level, which determines the space/time
tradeoff. You can control these levels either by setting a global
default or by setting the level directly on the ``Header`` object.
.. code-block::
setDefaultZipCompressionLevel (6);
setDefaultDwaCompressionLevel (45.0f);
The default zip compression level is 4 for OpenEXR v3.1.3+ and 6 for
previous versions. The default DWA compression level is 45.0f.
Alternatively, set the compression level on the ``Header`` object:
.. code-block::
:linenos:
Header header (width, height);
header.channels().insert ("G", Channel (HALF));
header.channels().insert ("Z", Channel (FLOAT));
header.compression() = ZIP_COMPRESSION;
header.zipCompressionLevel() = 6;
|