File: ReadingAndWritingImageFiles.rst

package info (click to toggle)
openexr 3.1.13-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 37,616 kB
  • sloc: cpp: 186,653; ansic: 24,266; sh: 173; python: 68; makefile: 23
file content (2058 lines) | stat: -rw-r--r-- 80,814 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
..
  SPDX-License-Identifier: BSD-3-Clause
  Copyright Contributors to the OpenEXR Project.

Reading and Writing Image Files with the OpenEXR Library
########################################################

Document Purpose and Audience
=============================

This document shows how to write C++ code that reads and writes OpenEXR
2.0 image files.

The text assumes that the reader is familiar with OpenEXR terms like
“channel”, “attribute”, “data window” or “deep data”. For an explanation
of those terms see the :doc:`TechnicalIntroduction` document.

The OpenEXR source distribution contains a subdirectory, OpenEXRExamples,
with most of the code examples below. A Makefile is also provided, so
that the examples can easily be compiled and run.

A description of the file structure and format is provided in
:doc:`OpenEXRFileLayout`.

Scan Line Based and Tiled OpenEXR files
=======================================

In an OpenEXR file, pixel data can be stored either as scan lines or as
tiles. Files that store pixels as tiles can also store multi-resolution
images. For each of the two storage formats (scan line or tile-based),
the OpenEXR library supports two reading and writing interfaces:

1. The first, fully general, interface allows access to arbitrary
   channels, and supports many different in-memory pixel data layouts.
2. The second interface is easier to use, but limits access to 16-bit
   (`HALF`) RGBA (red, green, blue, alpha) channels, and provides fewer
   options for laying out pixels in memory.

The interfaces for reading and writing OpenEXR files are implemented in
the following eight C++ classes:

.. list-table::
   :header-rows: 1
   :align: left
   
   * -
     - tiles
     - scan lines
     - scan lines and tiles
   * - arbitrary channels
     - ``TiledInputFile``
     -
     - ``InputFile``
   * -
     - ``TiledOutputFile``
     - ``OutputFile``
     - 
   * - RGBA only
     - ``TiledRgbaInputFile``
     -
     - ``RgbaInputFile``
   * -
     - ``TiledRgbaOutputFile``
     - ``RgbaOutputFile``
     -

The classes for reading scan line based images (``InputFile`` and
``RgbaInputFile``) can also be used to read tiled image files. This way,
programs that do not need support for tiled or multi-resolution images
can always use the rather straightforward scan line interfaces, without
worrying about complications related to tiling and multiple resolutions.
When a multi-resolution file is read via a scan line interface, only the
highest-resolution version of the image is accessible.

Multi-Part and Deep Data
------------------------

The procedure for writing multi-part and deep data files is similar to
writing scan line and tile. Though there is no simplified interface,
such as the RGBA-only interface.

This table describes the significant differences between writing
single-part scan line and tile files and writing multi-part and deep
data files.

+-------------------------+------------------------------------------------+---------------------------------------+
| Feature                 | scan line and tile                             | Multi-part and deep data              | 
+=========================+================================================+=======================================+
| Channel names may be    | Some channel names are reserved                | Channel name “sample count” is        |
| reserved                | in practice, but were never                    | reserved for a pixel sample count     |
|                         | formally defined.                              | slice in frame buffer.                |
|                         |                                                |                                       | 
|                         |                                                | **Note:** The name “sample count”     |
|                         |                                                | (all lowercase) is subject to change. |
+-------------------------+------------------------------------------------+---------------------------------------+
| Multiple parts          | Single-part format is intended for             |                                       |
|                         | storing a single multichannel image            | Multi-part files support multiple     |
|                         |                                                | independent parts. This allows        |
|                         |                                                | storing multiple views in the same    |
|                         |                                                | file for stereo images, storing       |
|                         |                                                | multiple resolutions in different     |
|                         |                                                | parts. It is possible to include      |
|                         |                                                | one or more scan line, tile, deep     |
|                         |                                                | scan line or deep tile format         |
|                         |                                                | images within a multi-part file.      |
|                         |                                                |                                       |
|                         |                                                | Custom data formats can also be       |
|                         |                                                | used to store additional parts,       |
|                         |                                                | but this is outside the scope of      |
|                         |                                                | this document.                        |
+-------------------------+------------------------------------------------+---------------------------------------+
| Backwards-compatible    | The new formats share the same abstract low-level IO as OpenEXR                        |
| low-level io available  | 1.7. It is therefore possible to use the same libraries to                             |
|                         | implement low level IO to read both formats.                                           |
+-------------------------+------------------------------------------------+---------------------------------------+


Using the RGBA-only Interface for Scan Line Based Files
=======================================================

Writing an RGBA Image File
--------------------------

Writing a simple RGBA image file is fairly straightforward:

.. literalinclude:: src/writeRgba1.cpp
   :linenos:

Construction of an RgbaOutputFile object, on line 4, creates an OpenEXR header,
sets the header's attributes, opens the file with the specified name, and stores
the header in the file. The header's display window and data window are both set
to ``(0,0) - (width-1, height-1)``. The channel list contains four channels,
``R``, ``G``, ``B``, and ``A``, of type ``half``.

Line 5 specifies how the pixel data are laid out in memory. In our
example, the ``pixels`` pointer is assumed to point to the beginning of an
array of ``width*height`` pixels. The pixels are represented as ``Rgba``
structs, which are defined like this:

.. code-block::
   :linenos:

    struct Rgba
    {
        half r; // red
        half g; // green
        half b; // blue
        half a; // alpha (opacity)
    };

The elements of our array are arranged so that the pixels of each scan
line are contiguous in memory. The ``setFrameBuffer()`` function takes
three arguments, ``base``, ``xStride``, and ``ystride``. To find the address
of pixel ``(x,y)``, the ``RgbaOutputFile`` object computes

    base + x * xStride + y * yStride.

In this case, ``base``, ``xStride`` and ``yStride`` are set to
``pixels``, ``1``, and ``width``, respectively, indicating that pixel
``(x,y)`` can be found at memory address

    pixels + 1 * x + width * y.

The call to ``writePixels(),`` on line 6, copies the image's pixels from
memory to the file. The argument to ``writePixels()``, ``height``, specifies
how many scan lines worth of data are copied.

Finally, returning from function ``writeRgba1()`` destroys the local
``RgbaOutputFile`` object, thereby closing the file.

Why do we have to tell the ``writePixels()`` function how many scan lines
we want to write? Shouldn't the ``RgbaOutputFile`` object be able to
derive the number of scan lines from the data window? The OpenEXR library
doesn't require writing all scan lines with a single ``writePixels()``
call. Many programs want to write scan lines individually, or in small
blocks. For example, rendering computer-generated images can take a
significant amount of time, and many rendering programs want to store
each scan line in the image file as soon as all of the pixels for that
scan line are available. This way, users can look at a partial image
before rendering is finished. The OpenEXR library allows writing the scan
lines in top-to-bottom or bottom-to-top direction. The direction is
defined by the file header's line order attribute (``INCREASING_Y`` or
``DECREASING_Y``). By default, scan lines are written top to bottom
(``INCREASING_Y``).

You may have noticed that in the example above, there are no explicit
checks to verify that writing the file actually succeeded. If the OpenEXR
library detects an error, it throws a C++ exception instead of returning
a C-style error code. With exceptions, error handling tends to be easier
to get right than with error return values. For instance, a program that
calls our ``writeRgba1()`` function can handle all possible error
conditions with a single try/catch block:

.. code-block::
   :linenos:

    try
    {
        writeRgba1 (fileName, pixels, width, height);
    }
    catch (const std::exception &exc)
    {
        std::cerr << exc.what() << std::endl;
    }

Writing a Cropped RGBA Image
----------------------------

Now we are going to store a cropped image in a file. For this example,
we assume that we have a frame buffer that is large enough to hold an
image with ``width`` by ``height`` pixels, but only part of the frame buffer
contains valid data. In the file's header, the size of the whole image
is indicated by the display window, ``(0,0) - (width-1, height-1)``, and
the data window specifies the region for which valid pixel data exist.
Only the pixels in the data window are stored in the file.

.. code-block::
   :linenos:

    void
    writeRgba2 (const char fileName[],
                const Rgba *pixels,
                int width,
                int height,
                const Box2i &dataWindow)
    {
        Box2i displayWindow (V2i (0, 0), V2i (width - 1, height - 1));
        RgbaOutputFile file (fileName, displayWindow, dataWindow, WRITE_RGBA);
        file.setFrameBuffer (pixels, 1, width);
        file.writePixels (dataWindow.max.y - dataWindow.min.y + 1);
    }

The code above is similar to that in `Writing an RGBA Image File`_, where the
whole image was stored in the file. Two things are different, however: When the
``RgbaOutputFile`` object is created, the data window and the display window are
explicitly specified rather than being derived from the image's width and
height.  The number of scan lines stored in the file by ``writePixels()`` is
equal to the height of the data window instead of the height of the whole
image. Since we are using the default ``INCREASING_Y`` direction for storing the
scan lines in the file, ``writePixels()`` starts at the top of the data window,
at y coordinate ``dataWindow.min.y``, and proceeds toward the bottom, at y
coordinate ``dataWindow.max.y``.

Even though we are storing only part of the image in the file, the frame
buffer is still large enough to hold the whole image. In order to save
memory, a smaller frame buffer could have been allocated, just big
enough to hold the contents of the data window. Assuming that the pixels
were still stored in contiguous scan lines, with the ``pixels`` pointer
pointing to the pixel at the upper left corner of the data window, at
coordinates ``(dataWindow.min.x, dataWindow.min.y)``, the arguments to the
``setFrameBuffer()`` call would have to be to be changed as follows:

.. code-block::
   :linenos:

    int dwWidth = dataWindow.max.x - dataWindow.min.x + 1;

    file.setFrameBuffer (pixels - dataWindow.min.x - dataWindow.min.y * dwWidth, 1, dwWidth);

With these settings, evaluation of

.. code-block::

    base + x * xStride + y * yStride

for pixel ``(dataWindow.min.x, dataWindow.min.y)`` produces

.. code-block::
   :linenos:

    pixels - dataWindow.min.x - dataWindow.min.y * dwWidth
       + dataWindow.min.x * 1
       + dataWindow.min.y * dwWidth

    = pixels -
        - dataWindow.min.x
        - dataWindow.min.y * (dataWindow.max.x - dataWindow.min.x + 1)
        + dataWindow.min.x
        + dataWindow.min.y * (dataWindow.max.x - dataWindow.min.x + 1)
    = pixels,

which is exactly what we want. Similarly, calculating the addresses for pixels
``(dataWindow.min.x+1, dataWindow.min.y)`` and ``(dataWindow.min.x,
dataWindow.min.y+1)`` yields ``pixels+1* and *pixels+dwWidth``, respectively.

Storing Custom Attributes
-------------------------

We will now to store an image in a file, and we will add two extra
attributes to the image file header: a string, called ``comments``, and a
4×4 matrix, called ``cameraTransform``.

.. literalinclude:: src/writeRgba3.cpp
   :language: c++
   :linenos:
                    
The ``setFrameBuffer()`` and ``writePixels()`` calls are the same as in the
previous examples, but construction of the ``RgbaOutputFile`` object is
different. The constructors in the previous examples automatically
created a header on the fly, and immediately stored it in the file. Here
we explicitly create a header and add our own attributes to it. When we
create the ``RgbaOutputFile`` object, we tell the constructor to use our
header instead of creating its own.

In order to make it easier to exchange data between programs written by
different people, the OpenEXR library defines a set of standard attributes for
commonly used data, such as colorimetric information, time and place where an
image was recorded, or the owner of an image file's content. For the current
list of standard attributes, see the header file ``ImfStandardAttributes.h``. The
list is expected to grow over time as OpenEXR users identify new types of data
they would like to represent in a standard format. If you need to store some
piece of information in an OpenEXR file header, it is probably a good idea to
check if a suitable standard attribute exists, before you define a new
attribute.

Reading an RGBA Image File
--------------------------

Reading an RGBA image is almost as easy as writing one:

.. literalinclude:: src/readRgba1.cpp
   :language: c++
   :linenos:
                    
Constructing an ``RgbaInputFile`` object, passing the name of the file to
the constructor, opens the file and reads the file's header.

After asking the ``RgbaInputFile`` object for the file's data window, we
allocate a buffer for the pixels. For convenience, we use the OpenEXR
library's ``Array2D`` class template (the call to ``resizeErase()`` does the
actual allocation). The number of scan lines in the buffer is equal to
the height of the data window, and the number of pixels per scan line is
equal to the width of the data window. The pixels are represented as
``Rgba`` structs.

Note that we ignore the display window in this example; in a program
that wanted to place the pixels in the data window correctly in an
overall image, the display window would have to be taken into account.

Just as for writing a file, calling ``setFrameBuffer()`` tells the
``RgbaInputFile`` object how to access individual pixels in the buffer.
(See also `Writing a Cropped RGBA Image`_.)

Calling ``readPixels()`` copies the pixel data from the file into the
buffer. If one or more of the ``R``, ``G``, ``B``, and ``A`` channels
are missing in the file, the corresponding field in the pixels is
filled with an appropriate default value. The default value for ``R``,
``G`` and ``B`` is 0.0, or black; the default value for ``A`` is 1.0,
or opaque.

Finally, returning from function ``readRgba1()`` destroys the local
``RgbaInputFile`` object, thereby closing the file.

Unlike the ``RgbaOutputFile``\'s ``writePixels()`` method,
``readPixels()`` has two arguments. Calling ``readPixels(y1,y2)``
copies the pixels for all scan lines with y coordinates from ``y1`` to
``y2`` into the frame buffer.  This allows access to the the scan
lines in any order. The image can be read all at once, one scan line
at a time, or in small blocks of a few scan lines. It is also possible
to skip parts of the image.

Note that even though random access is possible, reading the scan lines
in the same order as they were written, is more efficient. Random access
to the file requires seek operations, which tend to be slow. Calling the
RgbaInputFile's ``lineOrder()`` method returns the order in which the scan
lines in the file were written (``INCREASING_Y`` or ``DECREASING_Y``). If
successive calls to ``readPixels()`` access the scan lines in the right
order, the OpenEXR library reads the file as fast as possible, without
seek operations.

Reading an RGBA Image File in Chunks
------------------------------------

The following shows how to read an RGBA image in blocks of a few scan
lines. This is useful for programs that want to process high-resolution
images without allocating enough memory to hold the complete image.
These programs typically read a few scan lines worth of pixels into a
memory buffer, process the pixels, and store them in another file. The
buffer is then re-used for the next set of scan lines. Image operations
like color-correction or compositing ("A over B") are very easy to do
incrementally this way. With clever buffering of a few extra scan lines,
incremental versions of operations that require access to neighboring
pixels, like blurring or sharpening, are also possible.

.. literalinclude:: src/readRgba2.cpp
   :language: c++
   :linenos:

Again, we open the file and read the file header by constructing an
``RgbaInputFile`` object. Then we allocate a memory buffer that is
just large enough to hold ten complete scan lines. We call
``readPixels()`` to copy the pixels from the file into our buffer, ten
scan lines at a time.  Since we want to re-use the buffer for every
block of ten scan lines, we have to call ``setFramebuffer()`` before
each ``readPixels()`` call, in order to associate memory address
``&pixels[0][0]`` first with pixel coordinates ``(dw.min.x,
dw.min.y)``, then with ``(dw.min.x, dw.min.y+10)``, ``(dw.min.x,
dw.min.y+20)`` and so on.

Reading Custom Attributes
-------------------------

In `Storing Custom Attributes`_, we showed how to store custom
attributes in the image file header. Here we show how to test whether
a given file's header contains particular attributes, and how to read
those attributes' values.

.. literalinclude:: src/readHeader.cpp
   :language: c++
   :linenos:

As usual, we open the file by constructing an RgbaInputFile object.
Calling ``findTypedAttribute<T>(n)`` searches the header for an
attribute with type ``T`` and name ``n``. If a matching attribute is
found, ``findTypedAttribute()`` returns a pointer to the attribute. If
the header contains no attribute with name ``n``, or if the header
contains an attribute with name ``n``, but the attribute's type is not
``T``, ``findAttribute()`` returns ``0``. Once we have pointers to the
attributes we were looking for, we can access their values by calling
the attributes' ``value()`` methods.

In this example, we handle the possibility that the attributes we want
may not exist by explicitly checking for ``0`` pointers. Sometimes it
is more convenient to rely on exceptions instead. Function
``typedAttribute()``, a variation of ``findTypedAttribute()``, also
searches the header for an attribute with a given name and type, but
if the attribute in question does not exist, ``typedAttribute()``
throws an exception rather than returning ``0``.

Note that the pointers returned by ``findTypedAttribute()`` point to
data that are part of the ``RgbaInputFile`` object. The pointers
become invalid as soon as the ``RgbaInputFile`` object is
destroyed. Therefore, the following will not work:


.. code-block::
   :linenos:
   
    void
    readComments (const char fileName[], StringAttribute *&comments)
    {
        // error: comments pointer is invalid after this function returns

        RgbaInputFile file (fileName);

        comments = file.header().findTypedAttribute <StringAttribute> ("comments");
    }

``readComments()`` must copy the attribute's value before it returns; for
example, like this:

.. code-block::
   :linenos:

    void
    readComments (const char fileName[], string &comments)
    {
        RgbaInputFile file (fileName);

        comments = file.header().typedAttribute<StringAttribute>("comments").value();
    }

Luminance/Chroma and Gray-Scale Images
--------------------------------------

Writing an RGBA image file usually preserves the pixels without losing
any data; saving an image file and reading it back does not alter the
pixels' R, G, B and A values. Most of the time, lossless data storage
is exactly what we want, but sometimes file space or transmission
bandwidth are limited, and we would like to reduce the size of our
image files. It is often acceptable if the numbers in the pixels
change slightly as long as the image still looks just like the
original.

The RGBA interface in the OpenEXR library supports storing RGB data in
luminance/chroma format. The R, G, and B channels are converted into a
luminance channel, Y, and two chroma channels, RY and BY. The Y
channel represents a pixel's brightness, and the two chroma channels
represent its color. The human visual system's spatial resolution for
color is much lower than the spatial resolution for brightness. This
allows us to reduce the horizontal and vertical resolution of the RY
and BY channels by a factor of two. The visual appearance of the image
doesn't change, but the image occupies only half as much space, even
before data compression is applied. (For every four pixels, we store
four Y values, one RY value, and one BY value, instead of four R, four
G, and four B values.)

When opening a file for writing, a program can select how it wants the
pixels to be stored. The constructors for class ``RgbaOutputFile``
have an ``rgbaChannels`` argument, which determines the set of
channels in the file:

============== ========================
``WRITE_RGBA`` red, green, blue, alpha
``WRITE_YC``   luminance, chroma
``WRITE_YCA``  luminance, chroma, alpha
``WRITE_Y``    luminance only
``WRITE_YA``   luminance, alpha
============== ========================

``WRITE_Y`` and ``WRITE_YA`` provide an efficient way to store
gray-scale images. The chroma channels for a gray-scale image contain
only zeroes, so they can be omitted from the file.

When an image file is opened for reading, class ``RgbaInputFile``
automatically detects luminance/chroma images and converts the pixels
back to RGB format.

Using the General Interface for Scan Line Based Files
=====================================================

Writing an Image File
---------------------

This example demonstrates how to write an OpenEXR image file with two
channels: one channel, of type ``HALF``, is called G, and the other,
of type ``FLOAT``, is called Z. The size of the image is ``width`` by
``height`` pixels. The data for the two channels are supplied in two
separate buffers, ``gPixels`` and ``zPixels``. Within each buffer, the
pixels of each scan line are contiguous in memory.

.. literalinclude:: src/writeGZ1.cpp
   :language: c++
   :linenos:
      
On line 8, an OpenEXR header is created, and the header's display
window and data window are both set to ``(0, 0) - (width-1,
height-1)``.

Lines 9 and 10 specify the names and types of the image channels that
will be stored in the file.

Constructing an ``OutputFile`` object in line 12 opens the file with
the specified name, and stores the header in the file.

Lines 14 through 28 tell the ``OutputFile`` object how the pixel data
for the image channels are laid out in memory. After constructing a
``FrameBuffer`` object, a ``Slice`` is added for each of the image
file's channels. A ``Slice`` describes the memory layout of one
channel. The constructor for the ``Slice`` object takes four
arguments, ``type``, ``base``, ``xStride``, and ``yStride``. ``type``
specifies the pixel data type (``HALF``, ``FLOAT``, or ``UINT``); the
other three arguments define the memory address of pixel ``(x,y)`` as

.. code-block::
   
    base + x * xStride + y * yStride.

**Note:** ``base`` is of type ``char*``, and that offsets from
``base`` are not implicitly multiplied by the size of an individual
pixel, as in the RGBA-only interface. ``xStride`` and ``yStride`` must
explicitly take the size of the pixels into account.

With the values specified in our example, the OpenEXR library computes
the address of the G channel of pixel ``(x,y)`` like this:

.. code-block::

    (half*)((char*)gPixels + x * sizeof(half) * 1 + y * sizeof(half) * width)
    = (half*)((char*)gPixels + x * 2 + y * 2 * width),

The address of the Z channel of pixel ``(x,y)`` is

.. code-block::

    (float*)((char*)zPixels + x * sizeof(float) * 1 + y * sizeof(float) * width)
    = (float*)((char*)zPixels + x * 4 + y * 4 * width).

The ``writePixels()`` call in line 29 copies the image's pixels from
memory into the file. As in the RGBA-only interface, the argument to
``writePixels()`` specifies how many scan lines are copied into the
file.  (See `Writing an RGBA Image File`_.)

If the image file contains a channel for which the ``FrameBuffer`` object
has no corresponding ``Slice``, then the pixels for that channel in the
file are filled with zeroes. If the ``FrameBuffer`` object contains a
``Slice`` for which the file has no channel, then the ``Slice`` is ignored.

Returning from function ``writeGZ1()`` destroys the local ``OutputFile``
object and closes the file.

Writing a Cropped Image
-----------------------

Writing a cropped image using the general interface is analogous to
writing a cropped image using the RGBA-only interface, as shown in
`Writing a Cropped RGBA Image`_. In the file's header the data window
is set explicitly instead of being generated automatically from the
image's width and height. The number of scan lines that are stored in
the file is equal to the height of the data window, instead of the
height of the entire image. As in `Writing a Cropped RGBA Image`_, the
example code below assumes that the memory buffers for the pixels are
large enough to hold ``width`` by ``height`` pixels, but only the
region that corresponds to the data window will be stored in the
file. For smaller memory buffers with room only for the pixels in the
data window, the ``base``, ``xStride`` and ``yStride`` arguments for
the ``FrameBuffer`` object's slices would have to be adjusted
accordingly. (Again, see `Writing a Cropped RGBA Image`_.)

.. literalinclude:: src/writeGZ2.cpp
   :language: c++
   :linenos:

Reading an Image File
---------------------

In this example, we read an OpenEXR image file using the OpenEXR
library's general interface. We assume that the file contains two
channels, R, and G, of type ``HALF``, and one channel, Z, of type
``FLOAT``.  If one of those channels is not present in the image file,
the corresponding memory buffer for the pixels will be filled with an
appropriate default value.

.. literalinclude:: src/readGZ1.cpp
   :language: c++
   :linenos:

First, we open the file with the specified name, by constructing an
``InputFile`` object.

Using the ``Array2D`` class template, we allocate memory buffers for
the image's R, G and Z channels. The buffers are big enough to hold
all pixels in the file's data window.

Next, we create a ``FrameBuffer`` object, which describes our buffers
to the OpenEXR library. For each image channel, we add a slice to the
``FrameBuffer``.

As usual, the slice's ``type``, ``xStride``, and ``yStride`` describe
the corresponding buffer's layout. For the R channel, pixel
``(dw.min.x, dw.min.y)`` is at address ``&rPixels[0][0]``. By setting
the ``type``, ``xStride`` and ``yStride`` of the corresponding
``Slice`` object as shown above, evaluating

.. code-block::

    base + x * xStride + y * yStride

for pixel ``(dw.min.x, dw.min.y)`` produces

.. code-block::

    (char*)(&rPixels[0][0] - dw.min.x - dw.min.y * width)
     + dw.min.x * sizeof (rPixels[0][0]) * 1
     + dw.min.y * sizeof (rPixels[0][0]) * width
    = (char*)&rPixels[0][0]
     - dw.min.x * sizeof (rPixels[0][0])
     - dw.min.y * sizeof (rPixels[0][0]) * width
     + dw.min.x * sizeof (rPixels[0][0])
     + dw.min.y * sizeof (rPixels[0][0]) * width
    = &rPixels[0][0] *.*

The address calculations for pixels ``(dw.min.x+1, dw.min.y)`` and
``(dw.min.x, dw.min.y+1)`` produce ``&rPixels[0][0]+1`` and
``&rPixels[0][0]+width``, which is equivalent to ``&rPixels[0][1]``
and ``&rPixels[1][0]``.

Each ``Slice`` has a ``fillValue``. If the image file does not contain
an image channel for the ``Slice``, then the corresponding memory
buffer will be filled with the ``fillValue``.

The ``Slice's`` remaining two parameters, ``xSampling`` and
``ySampling`` are used for images where some of the channels are
subsampled, for instance, the RY and BY channels in luminance/chroma
images. (See `Luminance/Chroma and Gray-Scale Images`_.) Unless an
image contains subsampled channels, ``xSampling`` and ``ySampling``
should always be set to 1. For details see header files
``ImfFrameBuffer.h`` and ``ImfChannelList.h``.

After describing our memory buffers' layout, we call ``readPixels()``
to copy the pixel data from the file into the buffers. Just as with
the RGBA-only interface, ``readPixels()`` allows random-access to the
scan lines in the file. (See `Reading an RGBA Image File in Chunks`_.)

Interleaving Image Channels in the Frame Buffer
-----------------------------------------------

Here is a variation of the previous example. We are reading an image
file, but instead of storing each image channel in a separate memory
buffer, we interleave the channels in a single buffer. The buffer is
an array of structs, which are defined like this:

.. code-block::

    typedef struct GZ
    {
        half g;
        float z;
    };

The code to read the file is almost the same as before; aside from
reading only two instead of three channels, the only difference is how
``base``, ``xStride`` and ``yStride`` for the ``Slice`` s in the
``FrameBuffer`` object are computed:

.. literalinclude:: src/readGZ2.cpp
   :language: c++
   :linenos:


Which Channels are in a File?
-----------------------------

In functions ``readGZ1()`` and ``readGZ2()``, above, we simply assumed
that the files we were trying to read contained a certain set of
channels. We relied on the OpenEXR library to do "something
reasonable" in case our assumption was not true. Sometimes we want to
know exactly what channels are in an image file before reading any
pixels, so that we can do what we think is appropriate.

The file's header contains the file's channel list. Using iterators
similar to those in the C++ Standard Template Library, we can iterate
over the channels:

.. code-block::
   :linenos:

    const ChannelList &channels = file.header().channels();

    for (ChannelList::ConstIterator i = channels.begin(); i != channels.end(); ++i)
    {
        const Channel &channel = i.channel();
        // ...
    }

Channels can also be accessed by name, either with the ``[]`` operator, or
with the f ``indChannel()`` function:

.. code-block::
   :linenos:

    const ChannelList &channels = file.header().channels();

    const Channel &channel = channelList["G"];

    const Channel *channelPtr = channelList.findChannel("G");

The difference between the ``[]`` operator and ``findChannel()`` function is
how errors are handled. If the channel in question is not present,
``findChannel()`` returns ``0``; the ``[]`` operator throws an exception.

Layers
------

In an image file with many channels it is sometimes useful to group the
channels into ``layers``, that is, into sets of channels that logically
belong together. Grouping channels into layers is done using a naming
convention: channel C in layer L is called L.C.

For example, a computer-generated picture of a 3D scene may contain a
separate set of R, G and B channels for the light that originated at
each one of the light sources in the scene. Every set of R, G, and B
channels is in its own layer. If the layers are called light1, light2,
light3, etc., then the full names of the channels in this image are
light1.R, light1.G, light1.B, light2.R, light2.G, light2.B, light3.R,
and so on.

Layers can be nested; for instance, light1.specular.R refers to the R
channel in the specular sub-layer of layer light1.

Channel names that do not contain a ``.``, or that contain a ``.``
only at the beginning or at the end are not considered to be part of
any layer.

Class ``ChannelList`` has two member functions that support per-layer
access to channels: ``layers()`` returns the names of all layers in a
``ChannelList``, and ``channelsInLayer()`` converts a layer name into
a pair of iterators that allows iterating over the channels in the
corresponding layer.

The following sample code prints the layers in a ``ChannelList`` and
the channels in each layer:

.. code-block::
   :linenos:

    const ChannelList &channels = ... ;

    set<string> layerNames;

    channels.layers (layerNames);

    for (set<string>::const_iterator i = layerNames.begin(); i != layerNames.end(); ++i)
    {
         cout << "layer " << *i << endl;

         ChannelList::ConstIterator layerBegin, layerEnd;
         channels.channelsInLayer (*i, layerBegin, layerEnd);
         for (ChannelList::ConstIterator j = layerBegin; j != layerEnd; ++j)
         {
              cout << "tchannel " << j.name() << endl;

         }
    }

Tiles, Levels and Level Modes
=============================

A single tiled OpenEXR file can hold multiple versions of an image,
each with a different resolution. Each version is called a
``level``. A tiled file's *level mode* defines how many levels are
stored in the file.  There are three different level modes:

.. list-table::
   :align: left

   * - ``ONE_LEVEL``
     - The file contains only a single, full-resolution level.  A ONE_LEVEL
       image file is equivalent to a scan line based file; the only difference
       is that the pixels are accessed by tile instead of by scan line.
   * - ``MIPMAP_LEVELS``
     - The file contains multiple levels. The first level holds the image at
       full resolution. Each successive level is half the resolution of the
       previous level in x and y direction. The last level contains only a
       single pixel. ``MIPMAP_LEVELS`` files are used for texture-mapping and
       similar applications.
   * - ``RIPMAP_LEVELS``
     - Like ``MIPMAP_LEVELS``, but with more levels. The levels include all
       combinations of reducing the resolution of the image by powers of two
       independently in x and y direction. Used for texture mapping, like
       ``MIPMAP_LEVELS``. The additional levels in a ``RIPMAP_LEVELS`` file can
       help to accelerate anisotropic filtering during texture lookups. 

In ``MIPMAP_LEVELS`` and ``RIPMAP_LEVELS`` mode, the size (width or height)
of each level is computed by halving the size of the level with the next
higher resolution. If the size of the higher-resolution level is odd,
then the size of the lower-resolution level must be rounded up or down
in order to avoid arriving at a non-integer width or height. The
rounding direction is determined by the file's *level size rounding
mode*.

Within each level, the pixels of the image are stored in a
two-dimensional array of tiles. The tiles in an OpenEXR file can be any
rectangular shape, but all tiles in a file have the same size. This
means that lower-resolution levels contain fewer, rather than smaller,
tiles.

An OpenEXR file's level mode and rounding mode, and the size of the
tiles are stored in an attribute in the file header. The value of this
attribute is a ``TileDescription`` object:

.. code-block::
   :linenos:

    enum LevelMode
    {
        ONE_LEVEL,
        MIPMAP_LEVELS,
        RIPMAP_LEVELS
    };
    
    enum LevelRoundingMode
    {
        ROUND_DOWN,
        ROUND_UP
    };
    
    class TileDescription
    {
      public:
        unsigned int xSize; // size of a tile in the x dimension
        unsigned int ySize; // size of a tile in the y dimension
        LevelMode mode;
        LevelRoundingMode roundingMode;
        ... // (methods omitted)
    };

Using the RGBA-only Interface for Tiled Files
=============================================

Writing a Tiled RGBA Image File with One Resolution Level
---------------------------------------------------------

Writing a tiled RGBA image with a single level is easy:

.. literalinclude:: src/writeTiledRgbaONE1.cpp
   :language: c++
   :linenos:
      
Opening the file and defining the pixel data layout in memory are done
in almost the same way as for scan line based files:

Construction of the ``TiledRgbaOutputFile`` object, on line 7, creates
an OpenEXR header, sets the header's attributes, opens the file with
the specified name, and stores the header in the file. The header's
display window and data window are both set to ``(0, 0) - (width-1,
height-1)``.  The size of each tile in the file will be ``tileWidth``
by ``tileHeight`` pixels. The channel list contains four channels, R,
G, B, and A, of type ``HALF``.

Line 13 specifies how the pixel data are laid out in memory. The
arithmetic involved in calculating the memory address of a specific
pixel is the same as for the scan line based interface. (See `Writing
an RGBA Image File`_). We assume that the ``pixels`` pointer points to
an array of `width*height` pixels, which contains the entire image.

Line 14 copies the pixels into the file. The ``TiledRgbaOutputFile``\
's ``writeTiles()`` method takes four arguments, ``dxMin``, ``dyMin``,
``dxMax`` and ``dyMax``; ``writeTiles()`` writes all tiles that have
tile coordinates ``(dx,dy)``, where ``dxMin`` ≤ ``dx`` ≤ ``dxMax`` and
``dyMin`` ≤ ``dy`` ≤ ``dyMax``. The ``numXTiles()`` method returns the
number of tiles in the x direction, and similarly, the ``numYTiles()``
method returns the number of tiles in the y direction.  Thus,

.. code-block::
   
    out.writeTiles (0, out.numXTiles() - 1, 0, out.numYTiles() - 1);

writes the entire image.

This simple method works well when enough memory is available to
allocate a frame buffer for the entire image. When allocating a frame
buffer for the whole image is not desirable, for example because the
image is very large, a smaller frame buffer can be used. Even a frame
buffer that can hold only a single tile is sufficient, as demonstrated
in the following example:

.. literalinclude:: src/writeTiledRgbaONE2.cpp
   :language: c++
   :linenos:

On line 13 we allocate a ``pixels`` array with
``tileWidtf*tileHeight`` elements, which is just enough for one
tile. Line 18 computes the data window range for each tile, that is,
the set of pixel coordinates covered by the tile. The
``generatePixels()`` function, on line 20, fills the ``pixels`` array
with one tile's worth of image data. The same ``pixels`` array is
reused for all tiles. We must call ``setFrameBuffer()``, on line 22,
before writing each tile so that the pixels in the array are accessed
properly in the ``writeTile()`` call on line 26. Again, the address
arithmetic to access the pixels is the same as for scan line based
files. The values for the ``base``, ``xStride``, and ``yStride``
arguments to the ``setFrameBuffer()`` call must be chosen so that
evaluating the expression

.. code-block::

    base + x * xStride + y * yStride

produces the address of the pixel with coordinates ``(x,y)``.

Writing a Tiled RGBA Image File with Mipmap Levels
--------------------------------------------------

In order to store a multi-resolution image in a file, we can allocate a
frame buffer large enough for the highest-resolution level, ``(0,0)``, and
reuse it for all levels:

.. literalinclude:: src/writeTiledRgbaMIP1.cpp
   :linenos:

The main difference here is the use of ``MIPMAP_LEVELS`` on line 6 for
the ``TiledRgbaOutputFile`` constructor. This signifies that the file
will contain multiple levels, each level being a factor of 2 smaller
in both dimensions than the previous level. Mipmap images contain
``n`` levels, with level numbers

    (0,0), (1,1), ... (n-1,n-1),

where

    n = floor (log (max (width, height)) / log (2)) + 1

if the level size rounding mode is ``ROUND_DOWN``, or

    n = ceil (log (max (width, height)) / log (2)) + 1

if the level size rounding mode is ``ROUND_UP``. Note that even though
level numbers are pairs of integers, ``(lx,ly)``, only levels where
``lx`` equals ``ly`` are used in ``MIPMAP_LEVELS`` files.

Line 13 allocates a ``pixels`` array with ``width`` by ``height``
pixels, big enough to hold the highest-resolution level.

In order to store all tiles in the file, we must loop over all levels
in the image (line 17). ``numLevels()`` returns the number of levels,
``n``, in our mipmapped image. Since the tile sizes remain the same in
all levels, the number of tiles in both dimensions varies between
levels.  ``numXTiles()`` and ``numYTiles()`` take a level number as an
optional argument, and return the number of tiles in the x or y
direction for the corresponding level. Line 19 fills the ``pixels``
array with appropriate data for each level, and line 21 stores the
pixel data in the file.

As with ``ONE_LEVEL`` images, we can choose to only allocate a frame
buffer for a single tile and reuse it for all tiles in the image:

.. literalinclude:: src/writeTiledRgbaMIP2.cpp
   :language: c++
   :linenos:

The structure of this code is the same as for writing a ``ONE_LEVEL``
image using a tile-sized frame buffer, but we have to loop over more
tiles. Also, ``dataWindowForTile()`` takes an additional level
argument to determine the pixel range for the tile at the specified
level.

Writing a Tiled RGBA Image File with Ripmap Levels
--------------------------------------------------

The ripmap level mode allows for storing all combinations of reducing
the resolution of the image by powers of two independently in both
dimensions. Ripmap files contains ``nx*ny`` levels, with level
numbers:

    (0, 0), (1, 0), ... (nx-1, 0),
    (0, 1), (1, 1), ... (nx-1, 1),
    ...
    (0,ny-1), (1,ny-1), ... (nx-1,ny-1)

where

    nx = floor (log (width) / log (2)) + 1
    ny = floor (log (height) / log (2)) + 1

if the level size rounding mode is ``ROUND_DOWN``, or

    nx = ceil (log (width) / log (2)) + 1
    ny = ceil (log (height) / log (2)) + 1

if the level size rounding mode is ``ROUND_UP``.

With a frame buffer that is large enough to hold level ``(0,0)``, we can
write a ripmap file like this:

.. literalinclude:: src/writeTiledRgbaRIP1.cpp
   :linenos:

As for ``ONE_LEVEL`` and ``MIPMAP_LEVELS`` files, the frame buffer
doesn't have to be large enough to hold a whole level. Any frame
buffer big enough to hold at least a single tile will work.

Reading a Tiled RGBA Image File
-------------------------------

Reading a tiled RGBA image file is done similarly to writing one:

.. literalinclude:: src/readTiledRgba1.cpp
   :language: c++
   :linenos:

First we need to create a ``TiledRgbaInputFile`` object for the given
file name. We then retrieve information about the data window in order
to create an appropriately sized frame buffer, in this case large
enough to hold the whole image at level ``(0,0)``. After we set the
frame buffer, we read the tiles from the file.

This example only reads the highest-resolution level of the image. It
can be extended to read all levels, for multi-resolution images, by
also iterating over all levels within the image, analogous to the
examples in `Writing a Tiled RGBA Image File with Mipmap Levels`_, and
`Writing a Tiled RGBA Image File with Ripmap Levels`_.

Using the General Interface for Tiled Files
===========================================

Writing a Tiled Image File
--------------------------

This example is a variation of the one in `Writing an Image File`_. We
are writing a ``ONE_LEVEL`` image file with two channels, G, and Z, of
type ``HALF``, and ``FLOAT`` respectively, but here the file is tiled
instead of scan line based:

.. literalinclude:: src/writeTiled1.cpp
   :language: c++
   :linenos:
   
As one would expect, the code here is very similar to the code in
`Writing an Image File`_. The file's header is created in line 1,
while lines 2 and 3 specify the names and types of the image channels
that will be stored in the file. An important addition is line 4,
where we define the size of the tiles and the level mode. In this
example we use ``ONE_LEVEL`` for simplicity. Line 5 opens the file and
writes the header. Lines 6 through 17 tell the ``TiledOutputFile``
object the location and layout of the pixel data for each
channel. Finally, line 18 stores the tiles in the file.

Reading a Tiled Image File
--------------------------

Reading a tiled file with the general interface is virtually identical to
reading a scan line based file, as shown in `Interleaving Image Channels in the
Frame Buffer`_; only the last three lines are different. Instead of reading all
scan lines at once with a single function call, here we must iterate over all
tiles we want to read.

.. literalinclude:: src/readTiled1.cpp
   :language: c++
   :linenos:

In this example we assume that the file we want to read contains two
channels, G and Z, of type ``HALF`` and ``FLOAT`` respectively. If the
file contains other channels, we ignore them. We only read the
highest-resolution level of the image. If the input file contains more
levels (``MIPMAP_LEVELS`` or ``MIPMAP_LEVELS``), we can access the
extra levels by calling a four-argument version of the ``readTile()``
function:

.. code-block::

    in.readTile (tileX, tileY, levelX, levelY);

or by calling a six-argument version of ``readTiles()``:

.. code-block::

    in.readTiles (tileXMin, tileXMax, tileYMin, tileYMax, levelX, levelY);

Deep Data Files
===============

Writing a Deep Scan Line File
-----------------------------

This example creates an deep scan line file with two channels. It
demonstrates how to write a deep scan line file with two channels:

1. type ``FLOAT``, is called Z, and is used for storing sample depth, and
2. type ``HALF``, is called A and is used for storing sample opacity.

The size of the image is ``width`` by ``height`` pixels.

.. literalinclude:: src/writeDeepScanlineFile.cpp
   :language: c++
   :linenos:

The interface for deep scan line files is similar to scan line
files. We added two new classes to deal with deep data:
``DeepFrameBuffer`` and ``DeepSlice``. ``DeepFrameBuffer`` only
accepts ``DeepSlice`` as its input, except that it accepts ``Slice``
for sample count slice. The first difference we see from the previous
version is:

.. code-block::

    header.setType(DEEPSCANLINE);

where we set the type of the header to a predefine string
``DEEPSCANLINE``, then we insert a sample count slice using
``insertSampleCountSlice()``. After that, we insert a ``DeepSlice`` with
deep z data. Notice that deep slices have three strides, one more than
non-deep slices. The first two strides are used for the pointers in the
array. Because the memory space for ``Array2D`` is contiguous, we can get
the strides easily. The third stride is used for pixel samples. Because
the data type is float (and we are not interleaving), the stride should
be ``sizeof(float)``. If we name the stride for deep data
samples ``sampleStride``, then the memory address of the i-th sample of
this channel in pixel ``(x, y)`` is

.. code-block::

    base +
       x * xStride +
       y * yStride +
       i * sampleStride

Because we may not know the data until we are going to write it, the
deep data file must support postponed initialization, as shown in the
example code. Another approach would be to prepare all the data first,
and then write it all out at once.

Once the slices have been inserted, we get the sample count for each
pixel, via a user-supplied ``getPixelSampleCount()`` function, and
dynamically allocate memory for the Z and A channels. We then write to
file in a line-by-line fashion and finally free the the intermediate
data structures.

Reading a Deep Scan Line File
-----------------------------

An example of reading a deep scan line file created by previous code.

.. literalinclude:: src/readDeepScanlineFile.cpp
   :language: c++
   :linenos:

The interface for deep scan line files is similar to scan line files.
The main the difference is we use the sample count slice and deep data
slices. To do this, we added a new method to read the sample count table
from the file:

.. code-block::

   file.readPixelSampleCounts(dataWindow.min.y, dataWindow.max.y);

This method reads all pixel sample counts in the range
``[dataWindow.min.y, dataWindow.max.y]``, and stores the data to sample
count slice in framebuffer.

``ReadPixels()`` supports for postponed memory allocation.

Writing a Deep Tiled File
-------------------------

This example creates an deep tiled file with two channels. It
demonstrates how to write a deep tiled file with two channels:

1. type ``FLOAT``, is called Z, and is used for storing sample depth, and
2. type ``HALF``, is called A and is used for storing sample opacity.

The size of the image is ``width`` by ``height`` pixels.

.. literalinclude:: src/writeDeepTiledFile.cpp
   :language: c++
   :linenos:
              
Here, getSampleCountForTile is a user-supplied function that sets each
item in sampleCount array to the correct sampleCount for each pixel in
the tile, and getSampleDataForTile is a user-supplied function that
set the pointers in dataZ and dataA arrays to point to the correct
data

The interface for deep tiled files is similar to tiled files. The
differences are:

-  we set the type of the header to ``DEEPTILE``
-  we use ``insertSampleCountSlice()`` to set sample count slice, and
-  we use ``DeepSlice`` instead of ``Slice`` to provide three strides needed
   by the library.

Also, we support postponed initialization.

Reading a Deep Tiled File
-------------------------

An example of reading a deep tiled file created by code explained in the
`Writing a Deep Tiled File`_ section.

.. literalinclude:: src/readDeepTiledFile.cpp
   :linenos:

This code demonstrates how to read the first level of a deep tiled
file created by code explained in the `Writing a Deep Tiled File`_
section. The interface for deep tiled files is similar to tiled
files. The differences are:

-  we use ``insertSampleCountSlice()`` to set sample count slice
-  we use ``DeepSlice`` instead of ``Slice`` to provide three strides needed
   by the library, and
-  we use ``readPixelSampleCounts()`` to read in pixel sample counts into
   array.

Also we support postponed memory allocation.

In this example, entries in dataZ and dataA have been allocated by the
'new' calls must be deleted after use.

Threads
=======

Library Thread-Safety
---------------------

The OpenEXR library is thread-safe. In a multithreaded application
program, multiple threads can concurrently read and write distinct
OpenEXR files. In addition, accesses to a single shared file by
multiple application threads are automatically serialized. In other
words, each thread can independently create, use and destroy its own
input and output file objects. Multiple threads can also share a
single input or output file. In the latter case the OpenEXR library
uses mutual exclusion to ensure that only one thread at a time can
access the shared file.

Multithreaded I/O
-----------------

The OpenEXR library supports multithreaded file input and output where
the library creates its own worker threads that are independent of the
application program's threads. When an application thread calls
``readPixels()``, ``readTiles()``, ``writePixels()`` or
``writeTiles()`` to read or write multiple scan lines or tiles at
once, the library's worker threads process the tiles or scanlines in
parallel.

During startup, the application program must enable multithreading by
calling function ``setGlobalThreadCount()``. This tells the OpenEXR
library how many worker threads it should create. (As a special case,
setting the number of worker threads to zero reverts to
single-threaded operation; reading and writing image files happens
entirely in the application thread that calls the OpenEXR library.)

The application program should read or write as many scan lines or
tiles as possible in each call to ``readPixels()``, ``readTiles()``,
``writePixels()`` or ``writeTiles()``. This allows the library to
break up the work into chunks that can be processed in
parallel. Ideally the application reads or writes the entire image
using a single read or write call. If the application reads or writes
the image one scan line or tile at a time, the library reverts to
single-threaded file I/O.

The following function writes an RGBA file using four concurrent
worker threads:

.. literalinclude:: src/writeRgbaMT.cpp
   :language: c++
   :linenos:

Except for the call to ``setGlobalThreadCount()``, function ``writeRgbaMT()`` is
identical to function ``writeRgba1()`` in `Writing an RGBA Image File`_, but on
a computer with multiple processors ``writeRgbaMT()`` writes files significantly
faster than ``writeRgba1()``.

Multithreaded I/O, Multithreaded Application Program
----------------------------------------------------

Function ``setGlobalThreadCount()`` creates a global pool of worker
threads inside the OpenEXR library. If an application program has
multiple threads, and those threads read or write several OpenEXR
files at the same time, then the worker threads must be shared among
the application threads. By default each file will attempt to use the
entire worker thread pool for itself. If two files are read or written
simultaneously by two application threads, then it is possible that
all worker threads perform I/O on behalf of one of the files, while
I/O for the other file is stalled.

In order to avoid this situation, the constructors for input and
output file objects take an optional ``numThreads`` argument. This
gives the application program more control over how many threads will
be kept busy reading or writing a particular file.

For example, we may have an application program that runs on a
four-processor computer. The program has one thread that reads files
and another one that writes files. We want to keep all four processors
busy, and we want to split the processors evenly between input and
output.  Before creating the input and output threads, the application
instructs the OpenEXR library to create four worker threads:

.. code-block::
              
    // main, before application threads are created:

    setGlobalThreadCount (4);

In the input and output threads, input and output files are opened
with ``numThreads`` set to 2:

.. code-block::

    // application's input thread

    InputFile in (fileName, 2);

    ...

    // application's output thread

    OutputFile out (fileName, header, 2);

    ...

This ensures that file input and output in the application's two
threads can proceed concurrently, without one thread stalling the
other's I/O.

An alternative approach for thread management of multithreaded
applications is provided for deep scanline input files. Rather than
calling ``setFrameBuffer()``, the host application may call
``rawPixelData()`` to load a chunk of scanlines into a
host-application managed memory store, then pass a DeepFrameBuffer
object and the raw data to ``readPixelSampleCounts()`` and
``readPixels()``. Only the call to rawPixelData blocks; decompressing
the underlying data and copying it to the framebuffer will happen on
the host application's threads independently. This strategy is
generally ````less efficient```` than reading multiple scanlines at
the same time and allowing OpenEXR's thread management to decode the
file, but may prove effective when the host application has many
threads available, cannot avoid accessing scanlines in a random order
and wishes to avoid caching an entire uncompressed image. For more
details, refer to the inline comments in ImfDeepScanLineInputFile.h

Low-Level I/O
=============

Custom Low-Level File I/O
-------------------------

In all of the previous file reading and writing examples, we were
given a file name, and we relied on the constructors for our input
file or output file objects to open the file. In some contexts, for
example, in a plugin for an existing application program, we may have
to read from or write to a file that has already been opened. The
representation of the open file as a C or C++ data type depends on the
application program and on the operating system.

At its lowest level, the OpenEXR library performs file I/O via objects
of type ``IStream`` and ``OStream``. ``IStream`` and ``OStream`` are
abstract base classes. The OpenEXR library contains two derived
classes, ``StdIFStream`` and ``StdOFStream``, that implement reading
from ``std::ifstream`` and writing to ``std::ofstream`` objects. An
application program can implement alternative file I/O mechanisms by
deriving its own classes from ``Istream`` and ``Ostream``. This way,
OpenEXR images can be stored in arbitrary file-like objects, as long
as it is possible to support read, write, seek and tell operations
with semantics similar to the corresponding ``std::ifstream`` and
``std::ofstream`` methods.

For example, assume that we want to read an OpenEXR image from a C
stdio file (of type ``FILE``) that has already been opened. To do
this, we derive a new class, ``C_IStream``, from ``IStream``. The
declaration of class ``IStream`` looks like this:

.. code-block::
   :linenos:
          
    class IStream
    {
      public:
        virtual ~IStream ();

        virtual bool read (char c[], int n) = 0;
        virtual uint64_t tellg () = 0;
        virtual void seekg (uint64_t pos) = 0;
        virtual void clear ();
        const char * fileName () const;
        virtual bool isMemoryMapped () const;
        virtual char * readMemoryMapped (int n);

      protected:
        IStream (const char fileName[]);
        private:
        ...
    };
        
Our derived class needs a public constructor, and it must override four
methods:

.. code-block::
   :linenos:

    class C_IStream: public IStream
    {
      public:
        C_IStream (FILE *file, const char fileName[]):
            IStream (fileName), _file (file) {}

        virtual bool read (char c[], int n);
        virtual uint64_t tellg ();
        virtual void seekg (uint64_t pos);
        virtual void clear ();
    
      private:
    
        FILE * _file;
    };

``read(c,n)`` reads ``n`` bytes from the file, and stores them in
array ``c``.  If reading hits the end of the file before ``n`` bytes
have been read, or if an I/O error occurs, ``read(c,n)`` throws an
exception. If ``read(c,n)`` hits the end of the file after reading
``n`` bytes, it returns ``false``, otherwise it returns ``true``:

.. code-block::
   :linenos:

    bool
    C_IStream::read (char c[], int n)
    {
        if (n != fread (c, 1, n, _file))
        {
            // fread() failed, but the return value does not distinguish
            // between I/O errors and end of file, so we call ferror() to
            // determine what happened.
        
            if (ferror (_file))
                Iex::throwErrnoExc();
            else
                throw Iex::InputExc ("Unexpected end of file.");
        }
        
        return !feof (_file);
    }

``tellg()`` returns the current reading position, in bytes, from the
beginning of the file. The next ``read()`` call will begin reading at
the indicated position:

.. code-block::
   :linenos:

    uint64_t
    C_IStream::tellg ()
    {
        return ftell (_file);
    }

``seekg(pos)`` sets the current reading position to ``pos`` bytes from
the beginning of the file:

.. code-block::
   :linenos:

    void
    C_IStream::seekg (uint64_t pos)
    {
        clearerr (_file);
        fseek (_file, pos, SEEK_SET);
    }

``clear()`` clears any error flags that may be set on the file after a
``read()`` or ``seekg()`` operation has failed:

.. code-block::
   :linenos:

    void
    C_IStream::clear ()
    {
        clearerr (_file);
    }

In order to read an RGBA image from an open C stdio file, we first
make a ``C_IStream`` object. Then we create an ``RgbaInputFile``,
passing the ``C_IStream`` instead of a file name to the
constructor. After that, we read the image as usual (see `Reading an
RGBA Image File`_):

.. literalinclude:: src/readRgbaFILE.cpp
   :language: c++
   :linenos:

Memory-Mapped I/O
-----------------

When the OpenEXR library reads an image file, pixel data are copied
several times on their way from the file to the application's frame
buffer. For compressed files, the time spent copying is usually not
significant when compared to how long it takes to uncompress the data.
However, when uncompressed image files are being read from a fast file
system, it may be advantageous to eliminate one or two copy operations
by using memory-mapped I/O.

Memory-mapping establishes a relationship between a file and a
program's virtual address space, such that from the program's point of
view the file looks like an array of type ``char``. The contents of
the array match the data in the file. This allows the program to
access the data in the file directly, bypassing any copy operations
associated with reading the file via a C++ ``std::ifstream`` or a C
``FILE``.

Classes derived from ``IStream`` can optionally support memory-mapped
input. In order to do this, a derived class must override two virtual
functions, ``isMemoryMapped()`` and ``readMemoryMapped()``, in
addition to the functions needed for regular, non-memory-mapped input:

.. code-block::
   :linenos:

    class MemoryMappedIStream: public IStream
    {
      public:
        MemoryMappedIStream (const char fileName[]);
    
        virtual ~MemoryMappedIStream ();
    
        virtual bool isMemoryMapped () const;
        virtual char * readMemoryMapped (int n);
        virtual bool read (char c[], int n);
        virtual uint64_t tellg ();
    
        virtual void seekg (uint64_t pos);
    
      private:
    
        char * _buffer;
        uint64_t _fileLength;
        uint64_t _readPosition;
    };

The constructor for class ``MemoryMappedIStream`` maps the contents of
the input file into the program's address space. Memory mapping is not
portable across operating systems. The example shown here uses the
POSIX ``mmap()`` system call. On Windows files can be memory-mapped by
calling ``CreateFileMapping()`` and ``MapViewOfFile()``:

.. code-block::
   :linenos:

    MemoryMappedIStream::MemoryMappedIStream (const char fileName[])
       : IStream (fileName),
         _buffer (0),
         _fileLength (0),
         _readPosition (0)
    {
        int file = open (fileName, O_RDONLY);
    
        if (file < 0)
            THROW_ERRNO ("Cannot open file \"" << fileName << "\".");
    
        struct stat stat;
        fstat (file, &stat);
    
        _fileLength = stat.st_size;
    
        _buffer = (char *) mmap (0, _fileLength, PROT_READ, MAP_PRIVATE, file, 0);

        close (file);

        if (_buffer == MAP_FAILED)
            THROW_ERRNO ("Cannot memory-map file \"" << fileName << "\".");
    }

The destructor frees the address range associated with the file by
un-mapping the file. The POSIX version shown here uses ``munmap()``. A
Windows version would call ``UnmapViewOfFile()`` and
``CloseHandle()``:

.. code-block::
   :linenos:
   
    MemoryMappedIStream::~MemoryMappedIStream ()
    {
        munmap (_buffer, _fileLength);
    }

Function ``isMemoryMapped()`` returns ``true`` to indicate that
memory-mapped input is supported. This allows the OpenEXR library to
call ``readMemoryMapped()`` instead of ``read()``:

.. code-block::
   :linenos:

    bool
    MemoryMappedIStream::isMemoryMapped () const
    {
        return true;
    }

``readMemoryMapped()`` is analogous to ``read()``, but instead of
copying data into a buffer supplied by the caller,
``readMemoryMapped()`` returns a pointer into the memory-mapped file,
thus avoiding the copy operation:

.. code-block::
   :linenos:
   
    char *
    MemoryMappedIStream::readMemoryMapped (int n)
    {
        if (_readPosition >= _fileLength)
            throw Iex::InputExc ("Unexpected end of file.");
    
        if (_readPosition + n > _fileLength)
            throw Iex::InputExc ("Reading past end of file.");
    
        char *data = _buffer + _readPosition;
    
        _readPosition += n;
    
        return data;
    
    }

The ``MemoryMappedIStream`` class must also implement the regular ``read()``
function, as well as ``tellg()`` and ``seekg()``:

.. code-block::
   :linenos:

    bool
    MemoryMappedIStream::read (char c[], int n)
    {
        if (_readPosition >= _fileLength)
            throw Iex::InputExc ("Unexpected end of file.");
        
        if (_readPosition + n > _fileLength)
            throw Iex::InputExc ("Reading past end of file.");
    
        memcpy (c, _buffer + _readPosition, n);
    
        _readPosition += n;
    
        return _readPosition < _fileLength;
    
    }
    
    uint64_t
    MemoryMappedIStream::tellg ()
    {
        return _readPosition;
    }

    void
    MemoryMappedIStream::seekg (uint64_t pos)
    {
        _readPosition = pos;
    }

Class ``MemoryMappedIStream`` does not need a ``clear()``
function. Since the memory-mapped file has no error flags that need to
be cleared, the ``clear()`` method provided by class ``IStream``,
which does nothing, can be re-used.

Memory-mapping a file can be faster than reading the file via a C++
``std::istream`` or a C ``FILE``, but the extra speed comes at a
cost. A large memory-mapped file can occupy a significant portion of a
program's virtual address space. In addition, mapping and un-mapping
many files of varying sizes can severely fragment the address
space. After a while, the program may be unable to map any new files
because there is no contiguous range of free addresses that would be
large enough hold a file, even though the total amount of free space
would be sufficient. An application program that uses memory-mapped
I/O should manage its virtual address space in order to avoid
fragmentation. For example, the program can reserve several address
ranges, each one large enough to hold the largest file that the
program expects to read. The program can then explicitly map each new
file into one of the reserved ranges, keeping track of which ranges
are currently in use.

Miscellaneous
=============

Is this an OpenEXR File?
------------------------

Sometimes we want to test quickly if a given file is an OpenEXR file.
This can be done by looking at the beginning of the file: The first
four bytes of every OpenEXR file contain the 32-bit integer "magic
number" 20000630 in little-endian byte order. After reading a file's
first four bytes via any of the operating system's standard file I/O
mechanisms, we can compare them with the magic number by explicitly
testing if the bytes contain the values ``0x76``, ``0x2f``, ``0x31``,
and ``0x01``.

Given a file name, the following function returns ``true`` if the
corresponding file exists, is readable, and contains an OpenEXR image:

.. code-block::
   :linenos:

    bool
    isThisAnOpenExrFile (const char fileName[])
    {
        std::ifstream f (fileName, std::ios_base::binary);
    
        char b[4];
        f.read (b, sizeof (b));
    
        return !!f && b[0] == 0x76 && b[1] == 0x2f && b[2] == 0x31 && b[3] == 0x01;
    }

Using this function does not require linking with the OpenEXR library.

Programs that are linked with the OpenEXR library can determine if a
given file is an OpenEXR file by calling one of the following
functions, which are part of the library:

.. code-block::
   :linenos:

    bool isOpenExrFile (const char fileName[], bool &isTiled);
    
    bool isOpenExrFile (const char fileName[]);
    
    bool isTiledOpenExrFile (const char fileName[]);
    
    bool isOpenExrFile (IStream &is, bool &isTiled);
    
    bool isOpenExrFile (IStream &is);
    
    bool isTiledOpenExrFile (IStream &is);

Is this File Complete?
----------------------

Sometimes we want to test if an OpenEXR file is complete. The file may
be missing pixels, either because writing the file is still in
progress or because writing was aborted before the last scan line or
tile was stored in the file. Of course, we could test if a given file
is complete by attempting to read the entire file, but the input file
classes in the OpenEXR library have an ``isComplete()`` method that is
faster and more convenient.

The following function returns ``true`` or ``false``, depending on
whether a given OpenEXR file is complete or not:

.. code-block::
   :linenos:
   
    bool
    isComplete (const char fileName[])
    {
        InputFile in (fileName);
        return in.isComplete();
    }

Preview Images
--------------

Graphical user interfaces for selecting image files often represent
files as small ``preview`` or ``thumbnail`` images. In order to make loading
and displaying the preview images fast, OpenEXR files support storing
preview images in the file headers.

A preview image is an attribute whose value is of type
``PreviewImage``. A ``PreviewImage`` object is an array of pixels of
type ``PreviewRgba``. A pixel has four components, ``r``, ``g``, ``b``
and ``a``, of type *unsigned char*, where ``r``, ``g`` and ``b`` are
the pixel's red, green and blue components, encoded with a gamma of
2.2. ``a`` is the pixel's alpha channel; ``r``, ``g`` and ``b`` should
be premultiplied by ``a``. On a typical display with 8-bits per
component, the preview image can be shown by simply loading the ``r``,
``g`` and ``b`` components into the display's frame buffer. (No gamma
correction or tone mapping is required.)

The code fragment below shows how to test if an OpenEXR file has a
preview image, and how to access a preview image's pixels:

.. code-block::
   :linenos:

    RgbaInputFile file (fileName);
    
    if (file.header().hasPreviewImage())
    {
        const PreviewImage &preview = file.header().previewImage();
    
        for (int y = 0; y < preview.height(); ++y)
        {
            for (int x = 0; x < preview.width(); ++x)
            {
    
                const PreviewRgba &pixel = preview.pixel (x, y);
    
                ...
    
             }
        }
    }

Writing an OpenEXR file with a preview image is shown in the following
example. Since the preview image is an attribute in the file's header,
it is entirely separate from the main image. Here the preview image is
a smaller version of the main image, but this is not required; in some
cases storing an easily recognizable icon may be more
appropriate. This example uses the RGBA-only interface to write a scan
line based file, but preview images are also supported for files that
are written using the general interface, and for tiled files.

.. literalinclude:: src/writeRgbaWithPreview1.cpp
   :language: c++
   :linenos:

Lines 7 through 12 generate the preview image. Line 5 creates a header
for the image file. Line 16 converts the preview image into a
``PreviewImage`` attribute, and adds the attribute to the
header. Lines 18 through 20 store the header (with the preview image)
and the main image in a file.

Function ``makePreviewImage()``, called on line 12, generates the
preview image by scaling the main image down to one eighth of its
original width and height:

.. literalinclude:: src/makePreviewImage.cpp
   :language: c++
   :linenos:
              
To make this example easier to read, scaling the image is done by just
sampling every eighth pixel of every eighth scan line. This can lead
to aliasing artifacts in the preview image; for a higher-quality
preview image, the main image should be lowpass-filtered before it is
subsampled.

Function ``makePreviewImage()`` calls ``gamma()`` to convert the
floating-point red, green, and blue components of the sampled main
image pixels to ``unsigned char`` values. ``gamma()`` is a simplified
version of what the exrdisplay program does in order to show an
OpenEXR image's floating-point pixels on the screen (for details, see
exrdisplay's source code):

.. code-block::
   :linenos:
   
    unsigned char
    gamma (float x)
    {
        x = pow (5.5555f * max (0.f, x), 0.4545f) * 84.66f;
        return (unsigned char) clamp (x, 0.f, 255.f);
    }

``makePreviewImage()`` converts the pixels' alpha component to
unsigned char by by linearly mapping the range ``[0.0, 1.0]`` to
``[0,255]``.

Some programs write image files one scan line or tile at a time, while
the image is being generated. Since the image does not yet exist when
the file is opened for writing, it is not possible to store a preview
image in the file's header at this time (unless the preview image is
an icon that has nothing to do with the main image). However, it is
possible to store a blank preview image in the header when the file is
opened. The preview image can then be updated as the pixels become
available. This is demonstrated in the following example:

.. literalinclude:: src/writeRgbaWithPreview2.cpp
   :language: c++
   :linenos:

Environment Maps
----------------

An environment map is an image that represents an omnidirectional view
of a three-dimensional scene as seen from a particular 3D location.
Every pixel in the image corresponds to a 3D direction, and the data
stored in the pixel represent the amount of light arriving from this
direction. In 3D rendering applications, environment maps are often
used for image-based lighting techniques that approximate how objects
are illuminated by their surroundings. Environment maps with enough
dynamic range to represent even the brightest light sources in the
environment are sometimes called "light probe images."

In an OpenEXR file, an environment map is stored as a rectangular
pixel array, just like any other image, but an attribute in the file
header indicates that the image is an environment map. The attribute's
value, which is of type ``Envmap``, specifies the relation between 2D
pixel locations and 3D directions. ``Envmap`` is an enumeration
type. Two values are possible:

.. list-table::
   :align: left

   * - ``ENVMAP_LATLONG``
     - **Latitude-Longitude Map** The environment is projected onto
       the image using polar coordinates (latitude and longitude). A
       pixel's x coordinate corresponds to its longitude, and the y
       coordinate corresponds to its latitude. The pixel in the upper
       left corner of the data window has latitude +π/2 and longitude
       +π; the pixel in the lower right corner has latitude -π/2 and
       longitude -π. 
                
       In 3D space, latitudes -π/2 and +π/2 correspond to the negative
       and positive y direction. Latitude 0, longitude 0 points in the
       positive z direction; latitude 0, longitude π/2 points in the
       positive x direction. 

   * -
     - For a latitude-longitude map, the size of the data window
       should be 2×N by N pixels (width by height), where N can be any
       integer greater than 0.

       .. image:: images/latlong.png
          
   * - ``ENVMAP_CUBE``
     - **Cube Map** The environment is projected onto the six faces
       of an axis-aligned cube. The cube's faces are then arranged in
       a 2D image as shown below. 
   * -
     - For a cube map, the size of the data window should be N by 6×N
       pixels (width by height), where N can be any integer greater
       than 0. 

       .. image:: images/envcube.png

**Note:** Both kinds of environment maps contain redundant pixels: In
a latitude-longitude map, the top row and the bottom row of pixels
correspond to the map's north pole and south pole (latitudes +π/2 and
-π/2). In each of those two rows all pixels are the same. The leftmost
column and the rightmost column of pixels both correspond to the
meridian with longitude +π (or, equivalently, -π). The pixels in the
leftmost column are repeated in the rightmost column. In a cube-face
map, the pixels along each edge of a face are repeated along the
corresponding edge of the adjacent face. The pixel in each corner of a
face is repeated in the corresponding corners of the two adjacent
faces.

The following code fragment tests if an OpenEXR file contains an
environment map, and if it does, which kind:

.. code-block::
   :linenos:

    RgbaInputFile file (fileName);

    if (hasEnvmap (file.header()))
    {
        Envmap type = envmap (file.header());
       ...
    }

For each kind of environment map, the OpenEXR library provides a set
of routines that convert from 3D directions to 2D floating-point pixel
locations and back. Those routines are useful in application programs
that create environment maps and in programs that perform map lookups.
For details, see the header file ``ImfEnvmap.h``.

Compression
-----------

Data written to OpenEXR files can be compressed using one of several
compression algorithms.

To specify the compression algorithm, set the ``compression()`` value
on the ``Header`` object:

.. code-block::
   :linenos:

    Header header (width, height);
    header.channels().insert ("G", Channel (HALF));
    header.channels().insert ("Z", Channel (FLOAT));
    header.compression() = ZIP_COMPRESSION;

Supported compression types are:

+-------------------+------------------------------------------------+
| RLE_COMPRESSION   | run length encoding                            |
+-------------------+------------------------------------------------+
| ZIPS_COMPRESSION  | zlib compression, one scan line at a time      |
+-------------------+------------------------------------------------+
| ZIP_COMPRESSION   | zlib compression, in blocks of 16 scan lines   |
+-------------------+------------------------------------------------+
| PIZ_COMPRESSION   | piz-based wavelet compression                  |
+-------------------+------------------------------------------------+
| PXR24_COMPRESSION | lossy 24-bit float compression                 |
+-------------------+------------------------------------------------+
| B44_COMPRESSION   | lossy 4-by-4 pixel block compression,          |
|                   | fixed compression rate                         |
+-------------------+------------------------------------------------+
| B44A_COMPRESSION  | lossy 4-by-4 pixel block compression,          |
|                   | flat fields are compressed more                |
+-------------------+------------------------------------------------+
| DWAA_COMPRESSION  | lossy DCT based compression, in blocks of      |
|                   | 32 scanlines. More efficient for partial       |
|                   | buffer access.                                 |
+-------------------+------------------------------------------------+
| DWAB_COMPRESSION  | lossy DCT based compression, in blocks of 256  |
|                   | scanlines. More efficient space-wise and       |
|                   | faster to decode full frames than              |
|                   | ``DWAA_COMPRESSION``.                          |
+-------------------+------------------------------------------------+


``ZIP_COMPRESSION`` and ``DWA`` compression compress to a
user-controllable compression level, which determines the space/time
tradeoff. You can control these levels either by setting a global
default or by setting the level directly on the ``Header`` object.

.. code-block::

   setDefaultZipCompressionLevel (6);
   setDefaultDwaCompressionLevel (45.0f);

The default zip compression level is 4 for OpenEXR v3.1.3+ and 6 for
previous versions. The default DWA compression level is 45.0f.

Alternatively, set the compression level on the ``Header`` object:

.. code-block::
   :linenos:

    Header header (width, height);
    header.channels().insert ("G", Channel (HALF));
    header.channels().insert ("Z", Channel (FLOAT));
    header.compression() = ZIP_COMPRESSION;
    header.zipCompressionLevel() = 6;