1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2015-2016 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
applyBoundaryLayer
Group
grpPreProcessingUtilities
Description
Apply a simplified boundary-layer model to the velocity and
turbulence fields based on the 1/7th power-law.
The uniform boundary-layer thickness is either provided via the -ybl option
or calculated as the average of the distance to the wall scaled with
the thickness coefficient supplied via the option -Cbl. If both options
are provided -ybl is used.
Compressible modes is automatically selected based on the existence of the
"thermophysicalProperties" dictionary required to construct the
thermodynamics package.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "turbulentFluidThermoModel.H"
#include "wallDist.H"
#include "processorFvPatchField.H"
#include "zeroGradientFvPatchField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Turbulence constants - file-scope
static const scalar Cmu(0.09);
static const scalar kappa(0.41);
template<class Type>
void correctProcessorPatches
(
GeometricField<Type, fvPatchField, volMesh>& vf
)
{
if (!Pstream::parRun())
{
return;
}
typedef GeometricField<Type, fvPatchField, volMesh> volFieldType;
// Not possible to use correctBoundaryConditions on fields as they may
// use local info as opposed to the constraint values employed here,
// but still need to update processor patches
typename volFieldType::Boundary& bf = vf.boundaryFieldRef();
forAll(bf, patchi)
{
if (isA<processorFvPatchField<Type>>(bf[patchi]))
{
bf[patchi].initEvaluate();
}
}
forAll(bf, patchi)
{
if (isA<processorFvPatchField<Type>>(bf[patchi]))
{
bf[patchi].evaluate();
}
}
}
void blendField
(
const word& fieldName,
const fvMesh& mesh,
const scalarField& mask,
const scalarField& boundaryLayerField
)
{
IOobject fieldHeader
(
fieldName,
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (fieldHeader.typeHeaderOk<volScalarField>(true))
{
volScalarField fld(fieldHeader, mesh);
scalarField& pf = fld.primitiveFieldRef();
pf = (1 - mask)*pf + mask*boundaryLayerField;
fld.max(SMALL);
// Do not correct BC
// - operation may use inconsistent fields wrt these local
// manipulations
//fld.correctBoundaryConditions();
correctProcessorPatches<scalar>(fld);
Info<< "Writing " << fieldName << nl << endl;
fld.write();
}
}
void calcOmegaField
(
const fvMesh& mesh,
const scalarField& mask,
const scalarField& kBL,
const scalarField& epsilonBL
)
{
// Turbulence omega
IOobject omegaHeader
(
"omega",
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (omegaHeader.typeHeaderOk<volScalarField>(true))
{
volScalarField omega(omegaHeader, mesh);
scalarField& pf = omega.primitiveFieldRef();
pf = (1 - mask)*pf + mask*epsilonBL/(Cmu*kBL + SMALL);
omega.max(SMALL);
// Do not correct BC
// - operation may use inconsistent fields wrt these local
// manipulations
// omega.correctBoundaryConditions();
correctProcessorPatches<scalar>(omega);
Info<< "Writing omega\n" << endl;
omega.write();
}
}
void setField
(
const fvMesh& mesh,
const word& fieldName,
const volScalarField& value
)
{
IOobject fldHeader
(
fieldName,
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (fldHeader.typeHeaderOk<volScalarField>(true))
{
volScalarField fld(fldHeader, mesh);
fld = value;
// Do not correct BC
// - operation may use inconsistent fields wrt these local
// manipulations
// fld.correctBoundaryConditions();
correctProcessorPatches<scalar>(fld);
Info<< "Writing " << fieldName << nl << endl;
fld.write();
}
}
tmp<volScalarField> calcNut
(
const fvMesh& mesh,
const volVectorField& U
)
{
const Time& runTime = mesh.time();
if
(
IOobject
(
basicThermo::dictName,
runTime.constant(),
mesh
).typeHeaderOk<IOdictionary>(true)
)
{
// Compressible
autoPtr<fluidThermo> pThermo(fluidThermo::New(mesh));
fluidThermo& thermo = pThermo();
volScalarField rho(thermo.rho());
// Update/re-write phi
#include "compressibleCreatePhi.H"
phi.write();
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
// Correct nut
turbulence->validate();
return tmp<volScalarField>::New(turbulence->nut());
}
else
{
// Incompressible
// Update/re-write phi
#include "createPhi.H"
phi.write();
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)
);
// Correct nut
turbulence->validate();
return tmp<volScalarField>::New(turbulence->nut());
}
}
int main(int argc, char *argv[])
{
argList::addNote
(
"Apply a simplified boundary-layer model to the velocity and"
" turbulence fields based on the 1/7th power-law."
);
#include "addRegionOption.H"
argList::addOption
(
"ybl",
"scalar",
"Specify the boundary-layer thickness"
);
argList::addOption
(
"Cbl",
"scalar",
"Boundary-layer thickness as Cbl * mean distance to wall"
);
argList::addBoolOption
(
"write-nut",
"Write the turbulence viscosity field"
);
#include "setRootCase.H"
if (!args.found("ybl") && !args.found("Cbl"))
{
FatalErrorInFunction
<< "Neither option 'ybl' or 'Cbl' have been provided to calculate "
<< "the boundary-layer thickness.\n"
<< "Please choose either 'ybl' OR 'Cbl'."
<< exit(FatalError);
}
else if (args.found("ybl") && args.found("Cbl"))
{
FatalErrorInFunction
<< "Both 'ybl' and 'Cbl' have been provided to calculate "
<< "the boundary-layer thickness.\n"
<< "Please choose either 'ybl' OR 'Cbl'."
<< exit(FatalError);
}
const bool writeNut = args.found("write-nut");
#include "createTime.H"
#include "createNamedMesh.H"
#include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Modify velocity by applying a 1/7th power law boundary-layer
// u/U0 = (y/ybl)^(1/7)
// assumes U0 is the same as the current cell velocity
Info<< "Setting boundary layer velocity" << nl << endl;
scalar yblv = ybl.value();
forAll(U, celli)
{
if (y[celli] <= yblv)
{
mask[celli] = 1;
U[celli] *= ::pow(y[celli]/yblv, (1.0/7.0));
}
}
mask.correctBoundaryConditions();
correctProcessorPatches<vector>(U);
// Retrieve nut from turbulence model
volScalarField nut(calcNut(mesh, U));
// Blend nut using boundary layer profile
volScalarField S("S", mag(dev(symm(fvc::grad(U)))));
nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S;
// Do not correct BC - wall functions will 'undo' manipulation above
// by using nut from turbulence model
correctProcessorPatches<scalar>(nut);
if (writeNut)
{
Info<< "Writing nut\n" << endl;
nut.write();
}
// Boundary layer turbulence kinetic energy
scalar ck0 = pow025(Cmu)*kappa;
scalarField kBL(sqr(nut/(ck0*min(y, ybl))));
// Boundary layer turbulence dissipation
scalar ce0 = ::pow(Cmu, 0.75)/kappa;
scalarField epsilonBL(ce0*kBL*sqrt(kBL)/min(y, ybl));
// Process fields if they are present
blendField("k", mesh, mask, kBL);
blendField("epsilon", mesh, mask, epsilonBL);
calcOmegaField(mesh, mask, kBL, epsilonBL);
if (writeNut) setField(mesh, "nuTilda", nut);
// Write the updated U field
Info<< "Writing U\n" << endl;
U.write();
Info<< nl;
runTime.printExecutionTime(Info);
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
|