File: applyBoundaryLayer.C

package info (click to toggle)
openfoam 1812%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 220,284 kB
  • sloc: cpp: 1,038,902; sh: 14,536; ansic: 8,240; lex: 657; xml: 387; python: 300; awk: 212; makefile: 94; sed: 88; csh: 3
file content (386 lines) | stat: -rw-r--r-- 10,128 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*---------------------------------------------------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     |
    \\  /    A nd           | Copyright (C) 2011-2016 OpenFOAM Foundation
     \\/     M anipulation  | Copyright (C) 2015-2016 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
    This file is part of OpenFOAM.

    OpenFOAM is free software: you can redistribute it and/or modify it
    under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.

    You should have received a copy of the GNU General Public License
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.

Application
    applyBoundaryLayer

Group
    grpPreProcessingUtilities

Description
    Apply a simplified boundary-layer model to the velocity and
    turbulence fields based on the 1/7th power-law.

    The uniform boundary-layer thickness is either provided via the -ybl option
    or calculated as the average of the distance to the wall scaled with
    the thickness coefficient supplied via the option -Cbl.  If both options
    are provided -ybl is used.

    Compressible modes is automatically selected based on the existence of the
    "thermophysicalProperties" dictionary required to construct the
    thermodynamics package.

\*---------------------------------------------------------------------------*/

#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "turbulentFluidThermoModel.H"
#include "wallDist.H"
#include "processorFvPatchField.H"
#include "zeroGradientFvPatchField.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Turbulence constants - file-scope
static const scalar Cmu(0.09);
static const scalar kappa(0.41);


template<class Type>
void correctProcessorPatches
(
    GeometricField<Type, fvPatchField, volMesh>& vf
)
{
    if (!Pstream::parRun())
    {
        return;
    }

    typedef GeometricField<Type, fvPatchField, volMesh> volFieldType;

    // Not possible to use correctBoundaryConditions on fields as they may
    // use local info as opposed to the constraint values employed here,
    // but still need to update processor patches
    typename volFieldType::Boundary& bf = vf.boundaryFieldRef();

    forAll(bf, patchi)
    {
        if (isA<processorFvPatchField<Type>>(bf[patchi]))
        {
            bf[patchi].initEvaluate();
        }
    }

    forAll(bf, patchi)
    {
        if (isA<processorFvPatchField<Type>>(bf[patchi]))
        {
            bf[patchi].evaluate();
        }
    }
}


void blendField
(
    const word& fieldName,
    const fvMesh& mesh,
    const scalarField& mask,
    const scalarField& boundaryLayerField
)
{
    IOobject fieldHeader
    (
        fieldName,
        mesh.time().timeName(),
        mesh,
        IOobject::MUST_READ,
        IOobject::NO_WRITE,
        false
    );

    if (fieldHeader.typeHeaderOk<volScalarField>(true))
    {
        volScalarField fld(fieldHeader, mesh);
        scalarField& pf = fld.primitiveFieldRef();
        pf = (1 - mask)*pf + mask*boundaryLayerField;
        fld.max(SMALL);

        // Do not correct BC
        // - operation may use inconsistent fields wrt these local
        //   manipulations
        //fld.correctBoundaryConditions();
        correctProcessorPatches<scalar>(fld);

        Info<< "Writing " << fieldName << nl << endl;
        fld.write();
    }
}


void calcOmegaField
(
    const fvMesh& mesh,
    const scalarField& mask,
    const scalarField& kBL,
    const scalarField& epsilonBL
)
{
    // Turbulence omega
    IOobject omegaHeader
    (
        "omega",
        mesh.time().timeName(),
        mesh,
        IOobject::MUST_READ,
        IOobject::NO_WRITE,
        false
    );

    if (omegaHeader.typeHeaderOk<volScalarField>(true))
    {
        volScalarField omega(omegaHeader, mesh);
        scalarField& pf = omega.primitiveFieldRef();

        pf = (1 - mask)*pf + mask*epsilonBL/(Cmu*kBL + SMALL);
        omega.max(SMALL);

        // Do not correct BC
        // - operation may use inconsistent fields wrt these local
        //   manipulations
        // omega.correctBoundaryConditions();
        correctProcessorPatches<scalar>(omega);

        Info<< "Writing omega\n" << endl;
        omega.write();
    }
}


void setField
(
    const fvMesh& mesh,
    const word& fieldName,
    const volScalarField& value
)
{
    IOobject fldHeader
    (
        fieldName,
        mesh.time().timeName(),
        mesh,
        IOobject::MUST_READ,
        IOobject::NO_WRITE,
        false
    );

    if (fldHeader.typeHeaderOk<volScalarField>(true))
    {
        volScalarField fld(fldHeader, mesh);
        fld = value;

        // Do not correct BC
        // - operation may use inconsistent fields wrt these local
        //   manipulations
        // fld.correctBoundaryConditions();
        correctProcessorPatches<scalar>(fld);

        Info<< "Writing " << fieldName << nl << endl;
        fld.write();
    }
}


tmp<volScalarField> calcNut
(
    const fvMesh& mesh,
    const volVectorField& U
)
{
    const Time& runTime = mesh.time();

    if
    (
        IOobject
        (
            basicThermo::dictName,
            runTime.constant(),
            mesh
        ).typeHeaderOk<IOdictionary>(true)
    )
    {
        // Compressible
        autoPtr<fluidThermo> pThermo(fluidThermo::New(mesh));
        fluidThermo& thermo = pThermo();
        volScalarField rho(thermo.rho());

        // Update/re-write phi
        #include "compressibleCreatePhi.H"
        phi.write();

        autoPtr<compressible::turbulenceModel> turbulence
        (
            compressible::turbulenceModel::New
            (
                rho,
                U,
                phi,
                thermo
            )
        );

        // Correct nut
        turbulence->validate();

        return tmp<volScalarField>::New(turbulence->nut());
    }
    else
    {
        // Incompressible

        // Update/re-write phi
        #include "createPhi.H"
        phi.write();

        singlePhaseTransportModel laminarTransport(U, phi);

        autoPtr<incompressible::turbulenceModel> turbulence
        (
            incompressible::turbulenceModel::New(U, phi, laminarTransport)
        );

        // Correct nut
        turbulence->validate();

        return tmp<volScalarField>::New(turbulence->nut());
    }
}


int main(int argc, char *argv[])
{
    argList::addNote
    (
        "Apply a simplified boundary-layer model to the velocity and"
        " turbulence fields based on the 1/7th power-law."
    );

    #include "addRegionOption.H"

    argList::addOption
    (
        "ybl",
        "scalar",
        "Specify the boundary-layer thickness"
    );
    argList::addOption
    (
        "Cbl",
        "scalar",
        "Boundary-layer thickness as Cbl * mean distance to wall"
    );
    argList::addBoolOption
    (
        "write-nut",
        "Write the turbulence viscosity field"
    );

    #include "setRootCase.H"

    if (!args.found("ybl") && !args.found("Cbl"))
    {
        FatalErrorInFunction
            << "Neither option 'ybl' or 'Cbl' have been provided to calculate "
            << "the boundary-layer thickness.\n"
            << "Please choose either 'ybl' OR 'Cbl'."
            << exit(FatalError);
    }
    else if (args.found("ybl") && args.found("Cbl"))
    {
        FatalErrorInFunction
            << "Both 'ybl' and 'Cbl' have been provided to calculate "
            << "the boundary-layer thickness.\n"
            << "Please choose either 'ybl' OR 'Cbl'."
            << exit(FatalError);
    }

    const bool writeNut = args.found("write-nut");

    #include "createTime.H"
    #include "createNamedMesh.H"
    #include "createFields.H"

    // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

    // Modify velocity by applying a 1/7th power law boundary-layer
    // u/U0 = (y/ybl)^(1/7)
    // assumes U0 is the same as the current cell velocity
    Info<< "Setting boundary layer velocity" << nl << endl;
    scalar yblv = ybl.value();
    forAll(U, celli)
    {
        if (y[celli] <= yblv)
        {
            mask[celli] = 1;
            U[celli] *= ::pow(y[celli]/yblv, (1.0/7.0));
        }
    }
    mask.correctBoundaryConditions();
    correctProcessorPatches<vector>(U);

    // Retrieve nut from turbulence model
    volScalarField nut(calcNut(mesh, U));

    // Blend nut using boundary layer profile
    volScalarField S("S", mag(dev(symm(fvc::grad(U)))));
    nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S;

    // Do not correct BC - wall functions will 'undo' manipulation above
    // by using nut from turbulence model
    correctProcessorPatches<scalar>(nut);
    if (writeNut)
    {
        Info<< "Writing nut\n" << endl;
        nut.write();
    }

    // Boundary layer turbulence kinetic energy
    scalar ck0 = pow025(Cmu)*kappa;
    scalarField kBL(sqr(nut/(ck0*min(y, ybl))));

    // Boundary layer turbulence dissipation
    scalar ce0 = ::pow(Cmu, 0.75)/kappa;
    scalarField epsilonBL(ce0*kBL*sqrt(kBL)/min(y, ybl));

    // Process fields if they are present
    blendField("k", mesh, mask, kBL);
    blendField("epsilon", mesh, mask, epsilonBL);
    calcOmegaField(mesh, mask, kBL, epsilonBL);
    if (writeNut) setField(mesh, "nuTilda", nut);

    // Write the updated U field
    Info<< "Writing U\n" << endl;
    U.write();

    Info<< nl;
    runTime.printExecutionTime(Info);

    Info<< "End\n" << endl;

    return 0;
}


// ************************************************************************* //