File: alphaEqnSubCycle.H

package info (click to toggle)
openfoam 4.1%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 163,028 kB
  • ctags: 58,990
  • sloc: cpp: 830,760; sh: 10,227; ansic: 8,215; xml: 745; lex: 437; awk: 194; sed: 91; makefile: 77; python: 18
file content (71 lines) | stat: -rw-r--r-- 1,771 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
{
    surfaceScalarField alphaPhi
    (
        IOobject
        (
            "alphaPhi",
            runTime.timeName(),
            mesh
        ),
        mesh,
        dimensionedScalar("0", phi.dimensions(), 0)
    );

    surfaceScalarField phir(fvc::flux(UdmModel.Udm()));

    if (nAlphaSubCycles > 1)
    {
        dimensionedScalar totalDeltaT = runTime.deltaT();
        surfaceScalarField alphaPhiSum
        (
            IOobject
            (
                "alphaPhiSum",
                runTime.timeName(),
                mesh
            ),
            mesh,
            dimensionedScalar("0", phi.dimensions(), 0)
        );

        for
        (
            subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
            !(++alphaSubCycle).end();
        )
        {
            #include "alphaEqn.H"
            alphaPhiSum += (runTime.deltaT()/totalDeltaT)*alphaPhi;
        }

        alphaPhi = alphaPhiSum;
    }
    else
    {
        #include "alphaEqn.H"
    }

    // Apply the diffusion term separately to allow implicit solution
    // and boundedness of the explicit advection
    {
        fvScalarMatrix alpha1Eqn
        (
            fvm::ddt(alpha1) - fvc::ddt(alpha1)
          - fvm::laplacian(turbulence->nut(), alpha1)
        );

        alpha1Eqn.solve(mesh.solver("alpha1Diffusion"));

        alphaPhi += alpha1Eqn.flux();
        alpha2 = 1.0 - alpha1;

        Info<< "Phase-1 volume fraction = "
            << alpha1.weightedAverage(mesh.Vsc()).value()
            << "  Min(" << alpha1.name() << ") = " << min(alpha1).value()
            << "  Max(" << alpha1.name() << ") = " << max(alpha1).value()
            << endl;
    }

    rhoPhi = alphaPhi*(rho1 - rho2) + phi*rho2;
    rho = mixture.rho();
}