1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
surfaceScalarField alphaf1("alphaf1", fvc::interpolate(alpha1));
surfaceScalarField alphaf2("alphaf2", scalar(1) - alphaf1);
volScalarField rAU1
(
IOobject::groupName("rAU", phase1.name()),
1.0
/(
U1Eqn.A()
+ max(phase1.residualAlpha() - alpha1, scalar(0))
*rho1/runTime.deltaT()
)
);
volScalarField rAU2
(
IOobject::groupName("rAU", phase2.name()),
1.0
/(
U2Eqn.A()
+ max(phase2.residualAlpha() - alpha2, scalar(0))
*rho2/runTime.deltaT()
)
);
surfaceScalarField alpharAUf1
(
fvc::interpolate(max(alpha1, phase1.residualAlpha())*rAU1)
);
surfaceScalarField alpharAUf2
(
fvc::interpolate(max(alpha2, phase2.residualAlpha())*rAU2)
);
// Turbulent diffusion, particle-pressure, lift and wall-lubrication fluxes
tmp<surfaceScalarField> phiF1;
tmp<surfaceScalarField> phiF2;
{
// Turbulent-dispersion diffusivity
volScalarField D(fluid.D());
// Phase-1 turbulent dispersion and particle-pressure flux
surfaceScalarField Df1
(
fvc::interpolate
(
rAU1*(D + phase1.turbulence().pPrime())
)
);
// Phase-2 turbulent dispersion and particle-pressure flux
surfaceScalarField Df2
(
fvc::interpolate
(
rAU2*(D + phase2.turbulence().pPrime())
)
);
// Cache the net diffusivity for implicit diffusion treatment in the
// phase-fraction equation
if (implicitPhasePressure)
{
fluid.pPrimeByA() = Df1 + Df2;
}
// Lift and wall-lubrication forces
volVectorField F(fluid.F());
// Phase-fraction face-gradient
surfaceScalarField snGradAlpha1(fvc::snGrad(alpha1)*mesh.magSf());
// Phase-1 dispersion, lift and wall-lubrication flux
phiF1 = Df1*snGradAlpha1 + fvc::flux(rAU1*F);
// Phase-1 dispersion, lift and wall-lubrication flux
phiF2 = - Df2*snGradAlpha1 - fvc::flux(rAU2*F);
}
// --- Pressure corrector loop
while (pimple.correct())
{
// Update continuity errors due to temperature changes
#include "correctContErrs.H"
volScalarField rho("rho", fluid.rho());
// Correct p_rgh for consistency with p and the updated densities
p_rgh = p - rho*gh;
// Correct fixed-flux BCs to be consistent with the velocity BCs
MRF.correctBoundaryFlux(U1, phi1);
MRF.correctBoundaryFlux(U2, phi2);
volVectorField HbyA1
(
IOobject::groupName("HbyA", phase1.name()),
U1
);
HbyA1 =
rAU1
*(
U1Eqn.H()
+ max(phase1.residualAlpha() - alpha1, scalar(0))
*rho1*U1.oldTime()/runTime.deltaT()
);
volVectorField HbyA2
(
IOobject::groupName("HbyA", phase2.name()),
U2
);
HbyA2 =
rAU2
*(
U2Eqn.H()
+ max(phase2.residualAlpha() - alpha2, scalar(0))
*rho2*U2.oldTime()/runTime.deltaT()
);
surfaceScalarField ghSnGradRho
(
"ghSnGradRho",
ghf*fvc::snGrad(rho)*mesh.magSf()
);
surfaceScalarField phig1
(
alpharAUf1
*(
ghSnGradRho
- alphaf2*fvc::interpolate(rho1 - rho2)*(g & mesh.Sf())
)
);
surfaceScalarField phig2
(
alpharAUf2
*(
ghSnGradRho
- alphaf1*fvc::interpolate(rho2 - rho1)*(g & mesh.Sf())
)
);
// ddtPhiCorr filter -- only apply in pure(ish) phases
surfaceScalarField alphaf1Bar(fvc::interpolate(fvc::average(alphaf1)));
surfaceScalarField phiCorrCoeff1(pos(alphaf1Bar - 0.99));
surfaceScalarField phiCorrCoeff2(pos(0.01 - alphaf1Bar));
{
surfaceScalarField::Boundary& phiCorrCoeff1Bf =
phiCorrCoeff1.boundaryFieldRef();
surfaceScalarField::Boundary& phiCorrCoeff2Bf =
phiCorrCoeff2.boundaryFieldRef();
forAll(mesh.boundary(), patchi)
{
// Set ddtPhiCorr to 0 on non-coupled boundaries
if
(
!mesh.boundary()[patchi].coupled()
|| isA<cyclicAMIFvPatch>(mesh.boundary()[patchi])
)
{
phiCorrCoeff1Bf[patchi] = 0;
phiCorrCoeff2Bf[patchi] = 0;
}
}
}
// Phase-1 predicted flux
surfaceScalarField phiHbyA1
(
IOobject::groupName("phiHbyA", phase1.name()),
fvc::flux(HbyA1)
+ phiCorrCoeff1*fvc::interpolate(alpha1.oldTime()*rho1.oldTime()*rAU1)
*(
MRF.absolute(phi1.oldTime())
- fvc::flux(U1.oldTime())
)/runTime.deltaT()
- phiF1()
- phig1
);
// Phase-2 predicted flux
surfaceScalarField phiHbyA2
(
IOobject::groupName("phiHbyA", phase2.name()),
fvc::flux(HbyA2)
+ phiCorrCoeff2*fvc::interpolate(alpha2.oldTime()*rho2.oldTime()*rAU2)
*(
MRF.absolute(phi2.oldTime())
- fvc::flux(U2.oldTime())
)/runTime.deltaT()
- phiF2()
- phig2
);
// Face-drag coefficients
surfaceScalarField rAUKd1(fvc::interpolate(rAU1*Kd));
surfaceScalarField rAUKd2(fvc::interpolate(rAU2*Kd));
// Construct the mean predicted flux
// including explicit drag contributions based on absolute fluxes
surfaceScalarField phiHbyA
(
"phiHbyA",
alphaf1*(phiHbyA1 + rAUKd1*MRF.absolute(phi2))
+ alphaf2*(phiHbyA2 + rAUKd2*MRF.absolute(phi1))
);
MRF.makeRelative(phiHbyA);
// Construct pressure "diffusivity"
surfaceScalarField rAUf
(
"rAUf",
mag(alphaf1*alpharAUf1 + alphaf2*alpharAUf2)
);
// Update the fixedFluxPressure BCs to ensure flux consistency
setSnGrad<fixedFluxPressureFvPatchScalarField>
(
p_rgh.boundaryFieldRef(),
(
phiHbyA.boundaryField()
- (
alphaf1.boundaryField()*phi1.boundaryField()
+ alphaf2.boundaryField()*phi2.boundaryField()
)
)/(mesh.magSf().boundaryField()*rAUf.boundaryField())
);
tmp<fvScalarMatrix> pEqnComp1;
tmp<fvScalarMatrix> pEqnComp2;
// Construct the compressibility parts of the pressure equation
if (pimple.transonic())
{
surfaceScalarField phid1
(
IOobject::groupName("phid", phase1.name()),
fvc::interpolate(psi1)*phi1
);
surfaceScalarField phid2
(
IOobject::groupName("phid", phase2.name()),
fvc::interpolate(psi2)*phi2
);
pEqnComp1 =
(
contErr1
- fvc::Sp(fvc::ddt(alpha1) + fvc::div(alphaPhi1), rho1)
)/rho1
+ correction
(
(alpha1/rho1)*
(
psi1*fvm::ddt(p_rgh)
+ fvm::div(phid1, p_rgh) - fvm::Sp(fvc::div(phid1), p_rgh)
)
);
deleteDemandDrivenData(pEqnComp1.ref().faceFluxCorrectionPtr());
pEqnComp1.ref().relax();
pEqnComp2 =
(
contErr2
- fvc::Sp(fvc::ddt(alpha2) + fvc::div(alphaPhi2), rho2)
)/rho2
+ correction
(
(alpha2/rho2)*
(
psi2*fvm::ddt(p_rgh)
+ fvm::div(phid2, p_rgh) - fvm::Sp(fvc::div(phid2), p_rgh)
)
);
deleteDemandDrivenData(pEqnComp2.ref().faceFluxCorrectionPtr());
pEqnComp2.ref().relax();
}
else
{
pEqnComp1 =
(
contErr1
- fvc::Sp(fvc::ddt(alpha1) + fvc::div(alphaPhi1), rho1)
)/rho1
+ (alpha1*psi1/rho1)*correction(fvm::ddt(p_rgh));
pEqnComp2 =
(
contErr2
- fvc::Sp(fvc::ddt(alpha2) + fvc::div(alphaPhi2), rho2)
)/rho2
+ (alpha2*psi2/rho2)*correction(fvm::ddt(p_rgh));
}
// Cache p prior to solve for density update
volScalarField p_rgh_0(p_rgh);
// Iterate over the pressure equation to correct for non-orthogonality
while (pimple.correctNonOrthogonal())
{
// Construct the transport part of the pressure equation
fvScalarMatrix pEqnIncomp
(
fvc::div(phiHbyA)
- fvm::laplacian(rAUf, p_rgh)
);
solve
(
pEqnComp1() + pEqnComp2() + pEqnIncomp,
mesh.solver(p_rgh.select(pimple.finalInnerIter()))
);
// Correct fluxes and velocities on last non-orthogonal iteration
if (pimple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqnIncomp.flux();
surfaceScalarField mSfGradp("mSfGradp", pEqnIncomp.flux()/rAUf);
// Partial-elimination phase-flux corrector
{
surfaceScalarField phi1s
(
phiHbyA1 + alpharAUf1*mSfGradp
);
surfaceScalarField phi2s
(
phiHbyA2 + alpharAUf2*mSfGradp
);
surfaceScalarField phir
(
((phi1s + rAUKd1*phi2s) - (phi2s + rAUKd2*phi1s))
/(1 - rAUKd1*rAUKd2)
);
phi1 = phi + alphaf2*phir;
phi2 = phi - alphaf1*phir;
}
// Compressibility correction for phase-fraction equations
fluid.dgdt() =
(
alpha1*(pEqnComp2 & p_rgh)
- alpha2*(pEqnComp1 & p_rgh)
);
// Optionally relax pressure for velocity correction
p_rgh.relax();
mSfGradp = pEqnIncomp.flux()/rAUf;
// Partial-elimination phase-velocity corrector
{
volVectorField Us1
(
HbyA1
+ fvc::reconstruct(alpharAUf1*mSfGradp - phiF1() - phig1)
);
volVectorField Us2
(
HbyA2
+ fvc::reconstruct(alpharAUf2*mSfGradp - phiF2() - phig2)
);
volScalarField D1(rAU1*Kd);
volScalarField D2(rAU2*Kd);
U = alpha1*(Us1 + D1*U2) + alpha2*(Us2 + D2*U1);
volVectorField Ur(((1 - D2)*Us1 - (1 - D1)*Us2)/(1 - D1*D2));
U1 = U + alpha2*Ur;
U1.correctBoundaryConditions();
fvOptions.correct(U1);
U2 = U - alpha1*Ur;
U2.correctBoundaryConditions();
fvOptions.correct(U2);
U = fluid.U();
}
}
}
// Update and limit the static pressure
p = max(p_rgh + rho*gh, pMin);
// Limit p_rgh
p_rgh = p - rho*gh;
// Update densities from change in p_rgh
rho1 += psi1*(p_rgh - p_rgh_0);
rho2 += psi2*(p_rgh - p_rgh_0);
// Correct p_rgh for consistency with p and the updated densities
rho = fluid.rho();
p_rgh = p - rho*gh;
p_rgh.correctBoundaryConditions();
}
// Update the phase kinetic energies
K1 = 0.5*magSqr(U1);
K2 = 0.5*magSqr(U2);
// Update the pressure time-derivative if required
if (thermo1.dpdt() || thermo2.dpdt())
{
dpdt = fvc::ddt(p);
}
|