1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
|
#include "readMechanicalProperties.H"
#include "readThermalProperties.H"
Info<< "Reading field D\n" << endl;
volVectorField D
(
IOobject
(
"D",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
autoPtr<volScalarField> Tptr(NULL);
if (thermalStress)
{
Info<< "Reading field T\n" << endl;
Tptr.reset
(
new volScalarField
(
IOobject
(
"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
)
);
}
Info<< "Calculating stress field sigmaD\n" << endl;
volSymmTensorField sigmaD
(
IOobject
(
"sigmaD",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mu*twoSymm(fvc::grad(D)) + lambda*(I*tr(fvc::grad(D)))
);
Info<< "Calculating explicit part of div(sigma) divSigmaExp\n" << endl;
volVectorField divSigmaExp
(
IOobject
(
"divSigmaExp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
fvc::div(sigmaD)
);
if (compactNormalStress)
{
divSigmaExp -= fvc::laplacian(2*mu + lambda, D, "laplacian(DD,D)");
}
else
{
divSigmaExp -= fvc::div((2*mu + lambda)*fvc::grad(D), "div(sigmaD)");
}
mesh.setFluxRequired(D.name());
|