File: solidDisplacementFoam.C

package info (click to toggle)
openfoam 4.1%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 163,028 kB
  • ctags: 58,990
  • sloc: cpp: 830,760; sh: 10,227; ansic: 8,215; xml: 745; lex: 437; awk: 194; sed: 91; makefile: 77; python: 18
file content (136 lines) | stat: -rw-r--r-- 4,178 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*---------------------------------------------------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     |
    \\  /    A nd           | Copyright (C) 2011-2016 OpenFOAM Foundation
     \\/     M anipulation  |
-------------------------------------------------------------------------------
License
    This file is part of OpenFOAM.

    OpenFOAM is free software: you can redistribute it and/or modify it
    under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.

    You should have received a copy of the GNU General Public License
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.

Application
    solidDisplacementFoam

Description
    Transient segregated finite-volume solver of linear-elastic,
    small-strain deformation of a solid body, with optional thermal
    diffusion and thermal stresses.

    Simple linear elasticity structural analysis code.
    Solves for the displacement vector field D, also generating the
    stress tensor field sigma.

\*---------------------------------------------------------------------------*/

#include "fvCFD.H"
#include "Switch.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])
{
    #include "postProcess.H"

    #include "setRootCase.H"
    #include "createTime.H"
    #include "createMesh.H"
    #include "createControls.H"
    #include "createFields.H"

    // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

    Info<< "\nCalculating displacement field\n" << endl;

    while (runTime.loop())
    {
        Info<< "Iteration: " << runTime.value() << nl << endl;

        #include "readSolidDisplacementFoamControls.H"

        int iCorr = 0;
        scalar initialResidual = 0;

        do
        {
            if (thermalStress)
            {
                volScalarField& T = Tptr();
                solve
                (
                    fvm::ddt(T) == fvm::laplacian(DT, T)
                );
            }

            {
                fvVectorMatrix DEqn
                (
                    fvm::d2dt2(D)
                 ==
                    fvm::laplacian(2*mu + lambda, D, "laplacian(DD,D)")
                  + divSigmaExp
                );

                if (thermalStress)
                {
                    const volScalarField& T = Tptr();
                    DEqn += fvc::grad(threeKalpha*T);
                }

                //DEqn.setComponentReference(1, 0, vector::X, 0);
                //DEqn.setComponentReference(1, 0, vector::Z, 0);

                initialResidual = DEqn.solve().max().initialResidual();

                if (!compactNormalStress)
                {
                    divSigmaExp = fvc::div(DEqn.flux());
                }
            }

            {
                volTensorField gradD(fvc::grad(D));
                sigmaD = mu*twoSymm(gradD) + (lambda*I)*tr(gradD);

                if (compactNormalStress)
                {
                    divSigmaExp = fvc::div
                    (
                        sigmaD - (2*mu + lambda)*gradD,
                        "div(sigmaD)"
                    );
                }
                else
                {
                    divSigmaExp += fvc::div(sigmaD);
                }
            }

        } while (initialResidual > convergenceTolerance && ++iCorr < nCorr);

        #include "calculateStress.H"

        Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
            << "  ClockTime = " << runTime.elapsedClockTime() << " s"
            << nl << endl;
    }

    Info<< "End\n" << endl;

    return 0;
}


// ************************************************************************* //