File: splitCells.C

package info (click to toggle)
openfoam 4.1%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 163,028 kB
  • ctags: 58,990
  • sloc: cpp: 830,760; sh: 10,227; ansic: 8,215; xml: 745; lex: 437; awk: 194; sed: 91; makefile: 77; python: 18
file content (721 lines) | stat: -rw-r--r-- 18,022 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
/*---------------------------------------------------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     |
    \\  /    A nd           | Copyright (C) 2011-2016 OpenFOAM Foundation
     \\/     M anipulation  |
-------------------------------------------------------------------------------
License
    This file is part of OpenFOAM.

    OpenFOAM is free software: you can redistribute it and/or modify it
    under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.

    You should have received a copy of the GNU General Public License
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.

Application
    splitCells

Description
    Utility to split cells with flat faces.

    Uses a geometric cut with a plane dividing the edge angle into two so
    might produce funny cells. For hexes it will use by default a cut from
    edge onto opposite edge (i.e. purely topological).

    Options:
    - split cells from cellSet only
    - use geometric cut for hexes as well

    The angle is the angle between two faces sharing an edge as seen from
    inside each cell. So a cube will have all angles 90. If you want
    to split cells with cell centre outside use e.g. angle 200

\*---------------------------------------------------------------------------*/

#include "argList.H"
#include "Time.H"
#include "polyTopoChange.H"
#include "polyTopoChanger.H"
#include "mapPolyMesh.H"
#include "polyMesh.H"
#include "cellCuts.H"
#include "cellSet.H"
#include "cellModeller.H"
#include "meshCutter.H"
#include "unitConversion.H"
#include "geomCellLooper.H"
#include "plane.H"
#include "edgeVertex.H"
#include "meshTools.H"
#include "ListOps.H"

using namespace Foam;

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //


labelList pack(const boolList& lst)
{
    labelList packedLst(lst.size());
    label packedI = 0;

    forAll(lst, i)
    {
        if (lst[i])
        {
            packedLst[packedI++] = i;
        }
    }
    packedLst.setSize(packedI);

    return packedLst;
}


scalarField pack(const boolList& lst, const scalarField& elems)
{
    scalarField packedElems(lst.size());
    label packedI = 0;

    forAll(lst, i)
    {
        if (lst[i])
        {
            packedElems[packedI++] = elems[i];
        }
    }
    packedElems.setSize(packedI);

    return packedElems;
}


// Given sin and cos of max angle between normals calculate whether f0 and f1
// on celli make larger angle. Uses sinAngle only for quadrant detection.
bool largerAngle
(
    const primitiveMesh& mesh,
    const scalar cosAngle,
    const scalar sinAngle,

    const label celli,
    const label f0,             // face label
    const label f1,

    const vector& n0,           // normal at f0
    const vector& n1
)
{
    const labelList& own = mesh.faceOwner();

    bool sameFaceOrder = !((own[f0] == celli) ^ (own[f1] == celli));

    // Get cos between faceArea vectors. Correct so flat angle (180 degrees)
    // gives -1.
    scalar normalCosAngle = n0 & n1;

    if (sameFaceOrder)
    {
        normalCosAngle = -normalCosAngle;
    }


    // Get cos between faceCentre and normal vector to determine in
    // which quadrant angle is. (Is correct for unwarped faces only!)
    // Correct for non-outwards pointing normal.
    vector c1c0(mesh.faceCentres()[f1] - mesh.faceCentres()[f0]);
    c1c0 /= mag(c1c0) + VSMALL;

    scalar fcCosAngle = n0 & c1c0;

    if (own[f0] != celli)
    {
        fcCosAngle = -fcCosAngle;
    }

    if (sinAngle < 0.0)
    {
        // Looking for concave angles (quadrant 3 or 4)
        if (fcCosAngle <= 0)
        {
            // Angle is convex so smaller.
            return false;
        }
        else
        {
            if (normalCosAngle < cosAngle)
            {
                return false;
            }
            else
            {
                return true;
            }
        }
    }
    else
    {
        // Looking for convex angles (quadrant 1 or 2)
        if (fcCosAngle > 0)
        {
            // Concave angle
            return true;
        }
        else
        {
            // Convex. Check cos of normal vectors.
            if (normalCosAngle > cosAngle)
            {
                return false;
            }
            else
            {
                return true;
            }
        }
    }
}


// Split hex (and hex only) along edgeI creating two prisms
bool splitHex
(
    const polyMesh& mesh,
    const label celli,
    const label edgeI,

    DynamicList<label>& cutCells,
    DynamicList<labelList>& cellLoops,
    DynamicList<scalarField>& cellEdgeWeights
)
{
    // cut handling functions
    edgeVertex ev(mesh);

    const edgeList& edges = mesh.edges();
    const faceList& faces = mesh.faces();

    const edge& e = edges[edgeI];

    // Get faces on the side, i.e. faces not using edge but still using one of
    // the edge endpoints.

    label leftI = -1;
    label rightI = -1;
    label leftFp = -1;
    label rightFp = -1;

    const cell& cFaces = mesh.cells()[celli];

    forAll(cFaces, i)
    {
        label facei = cFaces[i];

        const face& f = faces[facei];

        label fp0 = findIndex(f, e[0]);
        label fp1 = findIndex(f, e[1]);

        if (fp0 == -1)
        {
            if (fp1 != -1)
            {
                // Face uses e[1] but not e[0]
                rightI = facei;
                rightFp = fp1;

                if (leftI != -1)
                {
                    // Have both faces so exit
                    break;
                }
            }
        }
        else
        {
            if (fp1 != -1)
            {
                // Face uses both e[1] and e[0]
            }
            else
            {
                leftI = facei;
                leftFp = fp0;

                if (rightI != -1)
                {
                    break;
                }
            }
        }
    }

    if (leftI == -1 || rightI == -1)
    {
        FatalErrorInFunction
            << " rightI:" << rightI << abort(FatalError);
    }

    // Walk two vertices further on faces.

    const face& leftF = faces[leftI];

    label leftV = leftF[(leftFp + 2) % leftF.size()];

    const face& rightF = faces[rightI];

    label rightV = rightF[(rightFp + 2) % rightF.size()];

    labelList loop(4);
    loop[0] = ev.vertToEVert(e[0]);
    loop[1] = ev.vertToEVert(leftV);
    loop[2] = ev.vertToEVert(rightV);
    loop[3] = ev.vertToEVert(e[1]);

    scalarField loopWeights(4);
    loopWeights[0] = -GREAT;
    loopWeights[1] = -GREAT;
    loopWeights[2] = -GREAT;
    loopWeights[3] = -GREAT;

    cutCells.append(celli);
    cellLoops.append(loop);
    cellEdgeWeights.append(loopWeights);

    return true;
}


// Split celli along edgeI with a plane along halfNorm direction.
bool splitCell
(
    const polyMesh& mesh,
    const geomCellLooper& cellCutter,

    const label celli,
    const label edgeI,
    const vector& halfNorm,

    const boolList& vertIsCut,
    const boolList& edgeIsCut,
    const scalarField& edgeWeight,

    DynamicList<label>& cutCells,
    DynamicList<labelList>& cellLoops,
    DynamicList<scalarField>& cellEdgeWeights
)
{
    const edge& e = mesh.edges()[edgeI];

    vector eVec = e.vec(mesh.points());
    eVec /= mag(eVec);

    vector planeN = eVec ^ halfNorm;

    // Slightly tilt plane to make it not cut edges exactly
    // halfway on fully regular meshes (since we want cuts
    // to be snapped to vertices)
    planeN += 0.01*halfNorm;

    planeN /= mag(planeN);

    // Define plane through edge
    plane cutPlane(mesh.points()[e.start()], planeN);

    labelList loop;
    scalarField loopWeights;

    if
    (
        cellCutter.cut
        (
            cutPlane,
            celli,
            vertIsCut,
            edgeIsCut,
            edgeWeight,
            loop,
            loopWeights
        )
    )
    {
        // Did manage to cut cell. Copy into overall list.
        cutCells.append(celli);
        cellLoops.append(loop);
        cellEdgeWeights.append(loopWeights);

        return true;
    }
    else
    {
        return false;
    }
}


// Collects cuts for all cells in cellSet
void collectCuts
(
    const polyMesh& mesh,
    const geomCellLooper& cellCutter,
    const bool geometry,
    const scalar minCos,
    const scalar minSin,
    const cellSet& cellsToCut,

    DynamicList<label>& cutCells,
    DynamicList<labelList>& cellLoops,
    DynamicList<scalarField>& cellEdgeWeights
)
{
    // Get data from mesh
    const cellShapeList& cellShapes = mesh.cellShapes();
    const labelList& own = mesh.faceOwner();
    const labelListList& cellEdges = mesh.cellEdges();
    const vectorField& faceAreas = mesh.faceAreas();

    // Hex shape
    const cellModel& hex = *(cellModeller::lookup("hex"));

    // cut handling functions
    edgeVertex ev(mesh);


    // Cut information per mesh entity
    boolList vertIsCut(mesh.nPoints(), false);
    boolList edgeIsCut(mesh.nEdges(), false);
    scalarField edgeWeight(mesh.nEdges(), -GREAT);

    forAllConstIter(cellSet, cellsToCut, iter)
    {
        const label celli = iter.key();
        const labelList& cEdges = cellEdges[celli];

        forAll(cEdges, i)
        {
            label edgeI = cEdges[i];

            label f0, f1;
            meshTools::getEdgeFaces(mesh, celli, edgeI, f0, f1);

            vector n0 = faceAreas[f0];
            n0 /= mag(n0);

            vector n1 = faceAreas[f1];
            n1 /= mag(n1);

            if
            (
                largerAngle
                (
                    mesh,
                    minCos,
                    minSin,

                    celli,
                    f0,
                    f1,
                    n0,
                    n1
                )
            )
            {
                bool splitOk = false;

                if (!geometry && cellShapes[celli].model() == hex)
                {
                    splitOk =
                        splitHex
                        (
                            mesh,
                            celli,
                            edgeI,

                            cutCells,
                            cellLoops,
                            cellEdgeWeights
                        );
                }
                else
                {
                    vector halfNorm;

                    if ((own[f0] == celli) ^ (own[f1] == celli))
                    {
                        // Opposite owner orientation
                        halfNorm = 0.5*(n0 - n1);
                    }
                    else
                    {
                        // Faces have same owner or same neighbour so
                        // normals point in same direction
                        halfNorm = 0.5*(n0 + n1);
                    }

                    splitOk =
                        splitCell
                        (
                            mesh,
                            cellCutter,
                            celli,
                            edgeI,
                            halfNorm,

                            vertIsCut,
                            edgeIsCut,
                            edgeWeight,

                            cutCells,
                            cellLoops,
                            cellEdgeWeights
                        );
                }


                if (splitOk)
                {
                    // Update cell/edge/vertex wise info.
                    label index = cellLoops.size() - 1;
                    const labelList& loop = cellLoops[index];
                    const scalarField& loopWeights = cellEdgeWeights[index];

                    forAll(loop, i)
                    {
                        label cut = loop[i];

                        if (ev.isEdge(cut))
                        {
                            edgeIsCut[ev.getEdge(cut)] = true;
                            edgeWeight[ev.getEdge(cut)] = loopWeights[i];
                        }
                        else
                        {
                            vertIsCut[ev.getVertex(cut)] = true;
                        }
                    }

                    // Stop checking edges for this cell.
                    break;
                }
            }
        }
    }

    cutCells.shrink();
    cellLoops.shrink();
    cellEdgeWeights.shrink();
}



int main(int argc, char *argv[])
{
    argList::addNote
    (
        "split cells with flat faces"
    );
    #include "addOverwriteOption.H"
    argList::noParallel();
    argList::validArgs.append("edgeAngle [0..360]");

    argList::addOption
    (
        "set",
        "name",
        "split cells from specified cellSet only"
    );
    argList::addBoolOption
    (
        "geometry",
        "use geometric cut for hexes as well"
    );
    argList::addOption
    (
        "tol",
        "scalar", "edge snap tolerance (default 0.2)"
    );

    #include "setRootCase.H"
    #include "createTime.H"
    runTime.functionObjects().off();
    #include "createPolyMesh.H"
    const word oldInstance = mesh.pointsInstance();

    const scalar featureAngle = args.argRead<scalar>(1);
    const scalar minCos = Foam::cos(degToRad(featureAngle));
    const scalar minSin = Foam::sin(degToRad(featureAngle));

    const bool readSet   = args.optionFound("set");
    const bool geometry  = args.optionFound("geometry");
    const bool overwrite = args.optionFound("overwrite");

    const scalar edgeTol = args.optionLookupOrDefault("tol", 0.2);

    Info<< "Trying to split cells with internal angles > feature angle\n" << nl
        << "featureAngle      : " << featureAngle << nl
        << "edge snapping tol : " << edgeTol << nl;
    if (readSet)
    {
        Info<< "candidate cells   : cellSet " << args["set"] << nl;
    }
    else
    {
        Info<< "candidate cells   : all cells" << nl;
    }
    if (geometry)
    {
        Info<< "hex cuts          : geometric; using edge tolerance" << nl;
    }
    else
    {
        Info<< "hex cuts          : topological; cut to opposite edge" << nl;
    }
    Info<< endl;


    // Cell circumference cutter
    geomCellLooper cellCutter(mesh);
    // Snap all edge cuts close to endpoints to vertices.
    geomCellLooper::setSnapTol(edgeTol);

    // Candidate cells to cut
    cellSet cellsToCut(mesh, "cellsToCut", mesh.nCells()/100);

    if (readSet)
    {
        // Read cells to cut from cellSet
        cellSet cells(mesh, args["set"]);

        cellsToCut = cells;
    }

    while (true)
    {
        if (!readSet)
        {
            // Try all cells for cutting
            for (label celli = 0; celli < mesh.nCells(); celli++)
            {
                cellsToCut.insert(celli);
            }
        }


        // Cut information per cut cell
        DynamicList<label> cutCells(mesh.nCells()/10 + 10);
        DynamicList<labelList> cellLoops(mesh.nCells()/10 + 10);
        DynamicList<scalarField> cellEdgeWeights(mesh.nCells()/10 + 10);

        collectCuts
        (
            mesh,
            cellCutter,
            geometry,
            minCos,
            minSin,
            cellsToCut,

            cutCells,
            cellLoops,
            cellEdgeWeights
        );

        cellSet cutSet(mesh, "cutSet", cutCells.size());
        forAll(cutCells, i)
        {
            cutSet.insert(cutCells[i]);
        }

        // Gets cuts across cells from cuts through edges.
        Info<< "Writing " << cutSet.size() << " cells to cut to cellSet "
            << cutSet.instance()/cutSet.local()/cutSet.name()
            << endl << endl;
        cutSet.write();

        // Analyze cuts for clashes.
        cellCuts cuts
        (
            mesh,
            cutCells,       // cells candidate for cutting
            cellLoops,
            cellEdgeWeights
        );

        Info<< "Actually cut cells:" << cuts.nLoops() << nl << endl;

        if (cuts.nLoops() == 0)
        {
            break;
        }

        // Remove cut cells from cellsToCut  (Note:only relevant if -readSet)
        forAll(cuts.cellLoops(), celli)
        {
            if (cuts.cellLoops()[celli].size())
            {
                //Info<< "Removing cut cell " << celli << " from wishlist"
                //    << endl;
                cellsToCut.erase(celli);
            }
        }

        // At least some cells are cut.
        polyTopoChange meshMod(mesh);

        // Cutting engine
        meshCutter cutter(mesh);

        // Insert mesh refinement into polyTopoChange.
        cutter.setRefinement(cuts, meshMod);

        // Do all changes
        Info<< "Morphing ..." << endl;

        if (!overwrite)
        {
            runTime++;
        }

        autoPtr<mapPolyMesh> morphMap = meshMod.changeMesh(mesh, false);

        if (morphMap().hasMotionPoints())
        {
            mesh.movePoints(morphMap().preMotionPoints());
        }

        // Update stored labels on meshCutter
        cutter.updateMesh(morphMap());

        // Update cellSet
        cellsToCut.updateMesh(morphMap());

        Info<< "Remaining:" << cellsToCut.size() << endl;

        // Write resulting mesh
        if (overwrite)
        {
            mesh.setInstance(oldInstance);
        }

        Info<< "Writing refined morphMesh to time " << runTime.timeName()
            << endl;

        mesh.write();
    }

    Info<< "End\n" << endl;

    return 0;
}


// ************************************************************************* //