File: domainDecompositionMesh.C

package info (click to toggle)
openfoam 4.1%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 163,028 kB
  • ctags: 58,990
  • sloc: cpp: 830,760; sh: 10,227; ansic: 8,215; xml: 745; lex: 437; awk: 194; sed: 91; makefile: 77; python: 18
file content (485 lines) | stat: -rw-r--r-- 15,744 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*---------------------------------------------------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     |
    \\  /    A nd           | Copyright (C) 2011-2016 OpenFOAM Foundation
     \\/     M anipulation  |
-------------------------------------------------------------------------------
License
    This file is part of OpenFOAM.

    OpenFOAM is free software: you can redistribute it and/or modify it
    under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.

    You should have received a copy of the GNU General Public License
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.

InClass
    domainDecomposition

Description
    Private member of domainDecomposition.
    Decomposes the mesh into bits

\*---------------------------------------------------------------------------*/

#include "domainDecomposition.H"
#include "IOstreams.H"
#include "boolList.H"
#include "cyclicPolyPatch.H"

// * * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * //

void Foam::domainDecomposition::append(labelList& lst, const label elem)
{
    label sz = lst.size();
    lst.setSize(sz+1);
    lst[sz] = elem;
}


void Foam::domainDecomposition::addInterProcFace
(
    const label facei,
    const label ownerProc,
    const label nbrProc,

    List<Map<label>>& nbrToInterPatch,
    List<DynamicList<DynamicList<label>>>& interPatchFaces
) const
{
    Map<label>::iterator patchiter = nbrToInterPatch[ownerProc].find(nbrProc);

    // Introduce turning index only for internal faces (are duplicated).
    label ownerIndex = facei+1;
    label nbrIndex = -(facei+1);

    if (patchiter != nbrToInterPatch[ownerProc].end())
    {
        // Existing interproc patch. Add to both sides.
        label toNbrProcPatchi = patchiter();
        interPatchFaces[ownerProc][toNbrProcPatchi].append(ownerIndex);

        if (isInternalFace(facei))
        {
            label toOwnerProcPatchi = nbrToInterPatch[nbrProc][ownerProc];
            interPatchFaces[nbrProc][toOwnerProcPatchi].append(nbrIndex);
        }
    }
    else
    {
        // Create new interproc patches.
        label toNbrProcPatchi = nbrToInterPatch[ownerProc].size();
        nbrToInterPatch[ownerProc].insert(nbrProc, toNbrProcPatchi);
        DynamicList<label> oneFace;
        oneFace.append(ownerIndex);
        interPatchFaces[ownerProc].append(oneFace);

        if (isInternalFace(facei))
        {
            label toOwnerProcPatchi = nbrToInterPatch[nbrProc].size();
            nbrToInterPatch[nbrProc].insert(ownerProc, toOwnerProcPatchi);
            oneFace.clear();
            oneFace.append(nbrIndex);
            interPatchFaces[nbrProc].append(oneFace);
        }
    }
}


void Foam::domainDecomposition::decomposeMesh()
{
    // Decide which cell goes to which processor
    distributeCells();

    // Distribute the cells according to the given processor label

    // calculate the addressing information for the original mesh
    Info<< "\nCalculating original mesh data" << endl;

    // set references to the original mesh
    const polyBoundaryMesh& patches = boundaryMesh();
    const faceList& fcs = faces();
    const labelList& owner = faceOwner();
    const labelList& neighbour = faceNeighbour();

    // loop through the list of processor labels for the cell and add the
    // cell shape to the list of cells for the appropriate processor

    Info<< "\nDistributing cells to processors" << endl;

    // Cells per processor
    procCellAddressing_ = invertOneToMany(nProcs_, cellToProc_);

    Info<< "\nDistributing faces to processors" << endl;

    // Loop through all internal faces and decide which processor they belong to
    // First visit all internal faces. If cells at both sides belong to the
    // same processor, the face is an internal face. If they are different,
    // it belongs to both processors.

    procFaceAddressing_.setSize(nProcs_);

    // Internal faces
    forAll(neighbour, facei)
    {
        if (cellToProc_[owner[facei]] == cellToProc_[neighbour[facei]])
        {
            // Face internal to processor. Notice no turning index.
            procFaceAddressing_[cellToProc_[owner[facei]]].append(facei+1);
        }
    }

    // for all processors, set the size of start index and patch size
    // lists to the number of patches in the mesh
    forAll(procPatchSize_, proci)
    {
        procPatchSize_[proci].setSize(patches.size());
        procPatchStartIndex_[proci].setSize(patches.size());
    }

    forAll(patches, patchi)
    {
        // Reset size and start index for all processors
        forAll(procPatchSize_, proci)
        {
            procPatchSize_[proci][patchi] = 0;
            procPatchStartIndex_[proci][patchi] =
                procFaceAddressing_[proci].size();
        }

        const label patchStart = patches[patchi].start();

        if (!isA<cyclicPolyPatch>(patches[patchi]))
        {
            // Normal patch. Add faces to processor where the cell
            // next to the face lives

            const labelUList& patchFaceCells =
                patches[patchi].faceCells();

            forAll(patchFaceCells, facei)
            {
                const label curProc = cellToProc_[patchFaceCells[facei]];

                // add the face without turning index
                procFaceAddressing_[curProc].append(patchStart+facei+1);

                // increment the number of faces for this patch
                procPatchSize_[curProc][patchi]++;
            }
        }
        else
        {
            const cyclicPolyPatch& pp = refCast<const cyclicPolyPatch>
            (
                patches[patchi]
            );
            // cyclic: check opposite side on this processor
            const labelUList& patchFaceCells = pp.faceCells();

            const labelUList& nbrPatchFaceCells =
                pp.neighbPatch().faceCells();

            forAll(patchFaceCells, facei)
            {
                const label curProc = cellToProc_[patchFaceCells[facei]];
                const label nbrProc = cellToProc_[nbrPatchFaceCells[facei]];
                if (curProc == nbrProc)
                {
                    // add the face without turning index
                    procFaceAddressing_[curProc].append(patchStart+facei+1);
                    // increment the number of faces for this patch
                    procPatchSize_[curProc][patchi]++;
                }
            }
        }
    }


    // Done internal bits of the new mesh and the ordinary patches.


    // Per processor, from neighbour processor to the inter-processor patch
    // that communicates with that neighbour
    List<Map<label>> procNbrToInterPatch(nProcs_);

    // Per processor the faces per inter-processor patch
    List<DynamicList<DynamicList<label>>> interPatchFaces(nProcs_);

    // Processor boundaries from internal faces
    forAll(neighbour, facei)
    {
        label ownerProc = cellToProc_[owner[facei]];
        label nbrProc = cellToProc_[neighbour[facei]];

        if (ownerProc != nbrProc)
        {
            // inter - processor patch face found.
            addInterProcFace
            (
                facei,
                ownerProc,
                nbrProc,

                procNbrToInterPatch,
                interPatchFaces
            );
        }
    }

    // Add the proper processor faces to the sub information. For faces
    // originating from internal faces this is always -1.
    List<labelListList> subPatchIDs(nProcs_);
    List<labelListList> subPatchStarts(nProcs_);
    forAll(interPatchFaces, proci)
    {
        label nInterfaces = interPatchFaces[proci].size();

        subPatchIDs[proci].setSize(nInterfaces, labelList(1, label(-1)));
        subPatchStarts[proci].setSize(nInterfaces, labelList(1, label(0)));
    }


    // Special handling needed for the case that multiple processor cyclic
    // patches are created on each local processor domain, e.g. if a 3x3 case
    // is decomposed using the decomposition:
    //
    //              | 1 | 0 | 2 |
    //  cyclic left | 2 | 0 | 1 | cyclic right
    //              | 2 | 0 | 1 |
    //
    // - processors 1 and 2 will both have pieces of both cyclic left- and
    //   right sub-patches present
    // - the interface patch faces are stored in a single list, where each
    //   sub-patch is referenced into the list using a patch start index and
    //   size
    // - if the patches are in order (in the boundary file) of left, right
    //   - processor 1 will send: left, right
    //   - processor 1 will need to receive in reverse order: right, left
    //   - similarly for processor 2
    // - the sub-patches are therefore generated in 4 passes of the patch lists
    //   1. add faces from owner patch where local proc i < nbr proc i
    //   2. add faces from nbr patch where local proc i < nbr proc i
    //   3. add faces from owner patch where local proc i > nbr proc i
    //   4. add faces from nbr patch where local proc i > nbr proc i

    processInterCyclics
    (
        patches,
        interPatchFaces,
        procNbrToInterPatch,
        subPatchIDs,
        subPatchStarts,
        true,
        lessOp<label>()
    );

    processInterCyclics
    (
        patches,
        interPatchFaces,
        procNbrToInterPatch,
        subPatchIDs,
        subPatchStarts,
        false,
        lessOp<label>()
    );

    processInterCyclics
    (
        patches,
        interPatchFaces,
        procNbrToInterPatch,
        subPatchIDs,
        subPatchStarts,
        false,
        greaterOp<label>()
    );

    processInterCyclics
    (
        patches,
        interPatchFaces,
        procNbrToInterPatch,
        subPatchIDs,
        subPatchStarts,
        true,
        greaterOp<label>()
    );


    // Sort inter-proc patch by neighbour
    labelList order;
    forAll(procNbrToInterPatch, proci)
    {
        label nInterfaces = procNbrToInterPatch[proci].size();

        procNeighbourProcessors_[proci].setSize(nInterfaces);
        procProcessorPatchSize_[proci].setSize(nInterfaces);
        procProcessorPatchStartIndex_[proci].setSize(nInterfaces);
        procProcessorPatchSubPatchIDs_[proci].setSize(nInterfaces);
        procProcessorPatchSubPatchStarts_[proci].setSize(nInterfaces);

        //Info<< "Processor " << proci << endl;

        // Get sorted neighbour processors
        const Map<label>& curNbrToInterPatch = procNbrToInterPatch[proci];
        labelList nbrs = curNbrToInterPatch.toc();

        sortedOrder(nbrs, order);

        DynamicList<DynamicList<label>>& curInterPatchFaces =
            interPatchFaces[proci];

        forAll(nbrs, i)
        {
            const label nbrProc = nbrs[i];
            const label interPatch = curNbrToInterPatch[nbrProc];

            procNeighbourProcessors_[proci][i] = nbrProc;
            procProcessorPatchSize_[proci][i] =
                curInterPatchFaces[interPatch].size();
            procProcessorPatchStartIndex_[proci][i] =
                procFaceAddressing_[proci].size();

            // Add size as last element to substarts and transfer
            append
            (
                subPatchStarts[proci][interPatch],
                curInterPatchFaces[interPatch].size()
            );
            procProcessorPatchSubPatchIDs_[proci][i].transfer
            (
                subPatchIDs[proci][interPatch]
            );
            procProcessorPatchSubPatchStarts_[proci][i].transfer
            (
                subPatchStarts[proci][interPatch]
            );

            //Info<< "    nbr:" << nbrProc << endl;
            //Info<< "    interpatch:" << interPatch << endl;
            //Info<< "    size:" << procProcessorPatchSize_[proci][i] << endl;
            //Info<< "    start:" << procProcessorPatchStartIndex_[proci][i]
            //    << endl;
            //Info<< "    subPatches:"
            //    << procProcessorPatchSubPatchIDs_[proci][i]
            //    << endl;
            //Info<< "    subStarts:"
            //    << procProcessorPatchSubPatchStarts_[proci][i] << endl;

            // And add all the face labels for interPatch
            DynamicList<label>& interPatchFaces =
                curInterPatchFaces[interPatch];

            forAll(interPatchFaces, j)
            {
                procFaceAddressing_[proci].append(interPatchFaces[j]);
            }
            interPatchFaces.clearStorage();
        }
        curInterPatchFaces.clearStorage();
        procFaceAddressing_[proci].shrink();
    }


////XXXXXXX
//// Print a bit
//    forAll(procPatchStartIndex_, proci)
//    {
//        Info<< "Processor:" << proci << endl;
//
//        Info<< "    total faces:" << procFaceAddressing_[proci].size()
//            << endl;
//
//        const labelList& curProcPatchStartIndex = procPatchStartIndex_[proci];
//
//        forAll(curProcPatchStartIndex, patchi)
//        {
//            Info<< "    patch:" << patchi
//                << "\tstart:" << curProcPatchStartIndex[patchi]
//                << "\tsize:" << procPatchSize_[proci][patchi]
//                << endl;
//        }
//    }
//    Info<< endl;
//
//    forAll(procNeighbourProcessors_, proci)
//    {
//        Info<< "Processor " << proci << endl;
//
//        forAll(procNeighbourProcessors_[proci], i)
//        {
//            Info<< "    nbr:" << procNeighbourProcessors_[proci][i] << endl;
//            Info<< "    size:" << procProcessorPatchSize_[proci][i] << endl;
//            Info<< "    start:" << procProcessorPatchStartIndex_[proci][i]
//                << endl;
//        }
//    }
//    Info<< endl;
//
//    forAll(procFaceAddressing_, proci)
//    {
//        Info<< "Processor:" << proci << endl;
//
//        Info<< "    faces:" << procFaceAddressing_[proci] << endl;
//    }



    Info<< "\nDistributing points to processors" << endl;
    // For every processor, loop through the list of faces for the processor.
    // For every face, loop through the list of points and mark the point as
    // used for the processor. Collect the list of used points for the
    // processor.

    forAll(procPointAddressing_, proci)
    {
        boolList pointLabels(nPoints(), false);

        // Get reference to list of used faces
        const labelList& procFaceLabels = procFaceAddressing_[proci];

        forAll(procFaceLabels, facei)
        {
            // Because of the turning index, some labels may be negative
            const labelList& facePoints = fcs[mag(procFaceLabels[facei]) - 1];

            forAll(facePoints, pointi)
            {
                // Mark the point as used
                pointLabels[facePoints[pointi]] = true;
            }
        }

        // Collect the used points
        labelList& procPointLabels = procPointAddressing_[proci];

        procPointLabels.setSize(pointLabels.size());

        label nUsedPoints = 0;

        forAll(pointLabels, pointi)
        {
            if (pointLabels[pointi])
            {
                procPointLabels[nUsedPoints] = pointi;

                nUsedPoints++;
            }
        }

        // Reset the size of used points
        procPointLabels.setSize(nUsedPoints);
    }
}

// ************************************************************************* //