File: reconstructParMesh.C

package info (click to toggle)
openfoam 4.1%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 163,028 kB
  • ctags: 58,990
  • sloc: cpp: 830,760; sh: 10,227; ansic: 8,215; xml: 745; lex: 437; awk: 194; sed: 91; makefile: 77; python: 18
file content (906 lines) | stat: -rw-r--r-- 26,664 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
/*---------------------------------------------------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     |
    \\  /    A nd           | Copyright (C) 2011-2016 OpenFOAM Foundation
     \\/     M anipulation  |
-------------------------------------------------------------------------------
License
    This file is part of OpenFOAM.

    OpenFOAM is free software: you can redistribute it and/or modify it
    under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.

    You should have received a copy of the GNU General Public License
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.

Application
    reconstructParMesh

Description
    Reconstructs a mesh using geometric information only.

    Writes point/face/cell procAddressing so afterwards reconstructPar can be
    used to reconstruct fields.

    Note:
    - uses geometric matching tolerance (set with -mergeTol (at your option)

    If the parallel case does not have correct procBoundaries use the
    -fullMatch option which will check all boundary faces (bit slower).

\*---------------------------------------------------------------------------*/

#include "argList.H"
#include "timeSelector.H"

#include "IOobjectList.H"
#include "labelIOList.H"
#include "processorPolyPatch.H"
#include "mapAddedPolyMesh.H"
#include "polyMeshAdder.H"
#include "faceCoupleInfo.H"
#include "fvMeshAdder.H"
#include "polyTopoChange.H"
#include "extrapolatedCalculatedFvPatchFields.H"

using namespace Foam;

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Tolerance (as fraction of the bounding box). Needs to be fairly lax since
// usually meshes get written with limited precision (6 digits)
static const scalar defaultMergeTol = 1e-7;


static void renumber
(
    const labelList& map,
    labelList& elems
)
{
    forAll(elems, i)
    {
        if (elems[i] >= 0)
        {
            elems[i] = map[elems[i]];
        }
    }
}


// Determine which faces are coupled. Uses geometric merge distance.
// Looks either at all boundaryFaces (fullMatch) or only at the
// procBoundaries for proci. Assumes that masterMesh contains already merged
// all the processors < proci.
autoPtr<faceCoupleInfo> determineCoupledFaces
(
    const bool fullMatch,
    const label proci,
    const polyMesh& masterMesh,
    const polyMesh& meshToAdd,
    const scalar mergeDist
)
{
    if (fullMatch || masterMesh.nCells() == 0)
    {
        return autoPtr<faceCoupleInfo>
        (
            new faceCoupleInfo
            (
                masterMesh,
                meshToAdd,
                mergeDist,      // Absolute merging distance
                true            // Matching faces identical
            )
        );
    }
    else
    {
        // Pick up all patches on masterMesh ending in "toDDD" where DDD is
        // the processor number proci.

        const polyBoundaryMesh& masterPatches = masterMesh.boundaryMesh();

        const string toProcString("to" + name(proci));

        DynamicList<label> masterFaces
        (
            masterMesh.nFaces()
          - masterMesh.nInternalFaces()
        );

        forAll(masterPatches, patchi)
        {
            const polyPatch& pp = masterPatches[patchi];

            if
            (
                isA<processorPolyPatch>(pp)
             && (
                    pp.name().rfind(toProcString)
                 == (pp.name().size()-toProcString.size())
                )
            )
            {
                label meshFacei = pp.start();
                forAll(pp, i)
                {
                    masterFaces.append(meshFacei++);
                }
            }
        }
        masterFaces.shrink();


        // Pick up all patches on meshToAdd ending in "procBoundaryDDDtoYYY"
        // where DDD is the processor number proci and YYY is < proci.

        const polyBoundaryMesh& addPatches = meshToAdd.boundaryMesh();

        DynamicList<label> addFaces
        (
            meshToAdd.nFaces()
          - meshToAdd.nInternalFaces()
        );

        forAll(addPatches, patchi)
        {
            const polyPatch& pp = addPatches[patchi];

            if (isA<processorPolyPatch>(pp))
            {
                bool isConnected = false;

                for (label mergedProci = 0; mergedProci < proci; mergedProci++)
                {
                    const word fromProcString
                    (
                        processorPolyPatch::newName(proci, mergedProci)
                    );

                    if (pp.name() == fromProcString)
                    {
                        isConnected = true;
                        break;
                    }
                }

                if (isConnected)
                {
                    label meshFacei = pp.start();
                    forAll(pp, i)
                    {
                        addFaces.append(meshFacei++);
                    }
                }
            }
        }
        addFaces.shrink();

        return autoPtr<faceCoupleInfo>
        (
            new faceCoupleInfo
            (
                masterMesh,
                masterFaces,
                meshToAdd,
                addFaces,
                mergeDist,      // Absolute merging distance
                true,           // Matching faces identical?
                false,          // If perfect match are faces already ordered
                                // (e.g. processor patches)
                false           // are faces each on separate patch?
            )
        );
    }
}


autoPtr<mapPolyMesh> mergeSharedPoints
(
    const scalar mergeDist,
    polyMesh& mesh,
    labelListList& pointProcAddressing
)
{
    // Find out which sets of points get merged and create a map from
    // mesh point to unique point.
    Map<label> pointToMaster
    (
        fvMeshAdder::findSharedPoints
        (
            mesh,
            mergeDist
        )
    );

    Info<< "mergeSharedPoints : detected " << pointToMaster.size()
        << " points that are to be merged." << endl;

    if (returnReduce(pointToMaster.size(), sumOp<label>()) == 0)
    {
        return autoPtr<mapPolyMesh>(NULL);
    }

    polyTopoChange meshMod(mesh);

    fvMeshAdder::mergePoints(mesh, pointToMaster, meshMod);

    // Change the mesh (no inflation). Note: parallel comms allowed.
    autoPtr<mapPolyMesh> map = meshMod.changeMesh(mesh, false, true);

    // Update fields. No inflation, parallel sync.
    mesh.updateMesh(map);

    // pointProcAddressing give indices into the master mesh so adapt them
    // for changed point numbering.

    // Adapt constructMaps for merged points.
    forAll(pointProcAddressing, proci)
    {
        labelList& constructMap = pointProcAddressing[proci];

        forAll(constructMap, i)
        {
            label oldPointi = constructMap[i];

            // New label of point after changeMesh.
            label newPointi = map().reversePointMap()[oldPointi];

            if (newPointi < -1)
            {
                constructMap[i] = -newPointi-2;
            }
            else if (newPointi >= 0)
            {
                constructMap[i] = newPointi;
            }
            else
            {
                FatalErrorInFunction
                    << "Problem. oldPointi:" << oldPointi
                    << " newPointi:" << newPointi << abort(FatalError);
            }
        }
    }

    return map;
}


boundBox procBounds
(
    const argList& args,
    const PtrList<Time>& databases,
    const word& regionDir
)
{
    boundBox bb = boundBox::invertedBox;

    forAll(databases, proci)
    {
        fileName pointsInstance
        (
            databases[proci].findInstance
            (
                regionDir/polyMesh::meshSubDir,
                "points"
            )
        );

        if (pointsInstance != databases[proci].timeName())
        {
            FatalErrorInFunction
                << "Your time was specified as " << databases[proci].timeName()
                << " but there is no polyMesh/points in that time." << endl
                << "(there is a points file in " << pointsInstance
                << ")" << endl
                << "Please rerun with the correct time specified"
                << " (through the -constant, -time or -latestTime "
                << "(at your option)."
                << endl << exit(FatalError);
        }

        Info<< "Reading points from "
            << databases[proci].caseName()
            << " for time = " << databases[proci].timeName()
            << nl << endl;

        pointIOField points
        (
            IOobject
            (
                "points",
                databases[proci].findInstance
                (
                    regionDir/polyMesh::meshSubDir,
                    "points"
                ),
                regionDir/polyMesh::meshSubDir,
                databases[proci],
                IOobject::MUST_READ,
                IOobject::NO_WRITE,
                false
            )
        );

        boundBox domainBb(points, false);

        bb.min() = min(bb.min(), domainBb.min());
        bb.max() = max(bb.max(), domainBb.max());
    }

    return bb;
}


void writeCellDistance
(
    Time& runTime,
    const fvMesh& masterMesh,
    const labelListList& cellProcAddressing

)
{
    // Write the decomposition as labelList for use with 'manual'
    // decomposition method.
    labelIOList cellDecomposition
    (
        IOobject
        (
            "cellDecomposition",
            masterMesh.facesInstance(),
            masterMesh,
            IOobject::NO_READ,
            IOobject::NO_WRITE,
            false
        ),
        masterMesh.nCells()
    );

    forAll(cellProcAddressing, proci)
    {
        const labelList& pCells = cellProcAddressing[proci];
        UIndirectList<label>(cellDecomposition, pCells) = proci;
    }

    cellDecomposition.write();

    Info<< nl << "Wrote decomposition to "
        << cellDecomposition.objectPath()
        << " for use in manual decomposition." << endl;


    // Write as volScalarField for postprocessing. Change time to 0
    // if was 'constant'
    {
        const scalar oldTime = runTime.value();
        const label oldIndex = runTime.timeIndex();
        if (runTime.timeName() == runTime.constant() && oldIndex == 0)
        {
            runTime.setTime(0, oldIndex+1);
        }

        volScalarField cellDist
        (
            IOobject
            (
                "cellDist",
                runTime.timeName(),
                masterMesh,
                IOobject::NO_READ,
                IOobject::AUTO_WRITE
            ),
            masterMesh,
            dimensionedScalar("cellDist", dimless, 0),
            extrapolatedCalculatedFvPatchScalarField::typeName
        );

        forAll(cellDecomposition, celli)
        {
            cellDist[celli] = cellDecomposition[celli];
        }
        cellDist.correctBoundaryConditions();

        cellDist.write();

        Info<< nl << "Wrote decomposition as volScalarField to "
            << cellDist.name() << " for use in postprocessing."
            << endl;

        // Restore time
        runTime.setTime(oldTime, oldIndex);
    }
}


int main(int argc, char *argv[])
{
    argList::addNote
    (
        "reconstruct a mesh using geometric information only"
    );

    // Enable -constant ... if someone really wants it
    // Enable -withZero to prevent accidentally trashing the initial fields
    timeSelector::addOptions(true, true);
    argList::noParallel();
    argList::addOption
    (
        "mergeTol",
        "scalar",
        "specify the merge distance relative to the bounding box size "
        "(default 1e-7)"
    );
    argList::addBoolOption
    (
        "fullMatch",
        "do (slower) geometric matching on all boundary faces"
    );
    argList::addBoolOption
    (
        "cellDist",
        "write cell distribution as a labelList - for use with 'manual' "
        "decomposition method or as a volScalarField for post-processing."
    );

    #include "addRegionOption.H"
    #include "setRootCase.H"
    #include "createTime.H"

    Info<< "This is an experimental tool which tries to merge"
        << " individual processor" << nl
        << "meshes back into one master mesh. Use it if the original"
        << " master mesh has" << nl
        << "been deleted or if the processor meshes have been modified"
        << " (topology change)." << nl
        << "This tool will write the resulting mesh to a new time step"
        << " and construct" << nl
        << "xxxxProcAddressing files in the processor meshes so"
        << " reconstructPar can be" << nl
        << "used to regenerate the fields on the master mesh." << nl
        << nl
        << "Not well tested & use at your own risk!" << nl
        << endl;


    word regionName = polyMesh::defaultRegion;
    word regionDir = word::null;

    if
    (
        args.optionReadIfPresent("region", regionName)
     && regionName != polyMesh::defaultRegion
    )
    {
        regionDir = regionName;
        Info<< "Operating on region " << regionName << nl << endl;
    }

    scalar mergeTol = defaultMergeTol;
    args.optionReadIfPresent("mergeTol", mergeTol);

    scalar writeTol = Foam::pow(10.0, -scalar(IOstream::defaultPrecision()));

    Info<< "Merge tolerance : " << mergeTol << nl
        << "Write tolerance : " << writeTol << endl;

    if (runTime.writeFormat() == IOstream::ASCII && mergeTol < writeTol)
    {
        FatalErrorInFunction
            << "Your current settings specify ASCII writing with "
            << IOstream::defaultPrecision() << " digits precision." << endl
            << "Your merging tolerance (" << mergeTol << ") is finer than this."
            << endl
            << "Please change your writeFormat to binary"
            << " or increase the writePrecision" << endl
            << "or adjust the merge tolerance (-mergeTol)."
            << exit(FatalError);
    }


    const bool fullMatch = args.optionFound("fullMatch");

    if (fullMatch)
    {
        Info<< "Doing geometric matching on all boundary faces." << nl << endl;
    }
    else
    {
        Info<< "Doing geometric matching on correct procBoundaries only."
            << nl << "This assumes a correct decomposition." << endl;
    }

    bool writeCellDist = args.optionFound("cellDist");


    int nProcs = 0;

    while
    (
        isDir
        (
            args.rootPath()
          / args.caseName()
          / fileName(word("processor") + name(nProcs))
        )
    )
    {
        nProcs++;
    }

    Info<< "Found " << nProcs << " processor directories" << nl << endl;


    // Read all time databases
    PtrList<Time> databases(nProcs);

    forAll(databases, proci)
    {
        Info<< "Reading database "
            << args.caseName()/fileName(word("processor") + name(proci))
            << endl;

        databases.set
        (
            proci,
            new Time
            (
                Time::controlDictName,
                args.rootPath(),
                args.caseName()/fileName(word("processor") + name(proci))
            )
        );
    }

    // Use the times list from the master processor
    // and select a subset based on the command-line options
    instantList timeDirs = timeSelector::select
    (
        databases[0].times(),
        args
    );

    // Loop over all times
    forAll(timeDirs, timeI)
    {
        // Set time for global database
        runTime.setTime(timeDirs[timeI], timeI);

        Info<< "Time = " << runTime.timeName() << nl << endl;

        // Set time for all databases
        forAll(databases, proci)
        {
            databases[proci].setTime(timeDirs[timeI], timeI);
        }

        const fileName meshPath =
            databases[0].path()
           /databases[0].timeName()
           /regionDir
           /polyMesh::meshSubDir;

        if (!isFile(meshPath/"faces"))
        {
            Info<< "No mesh." << nl << endl;
            continue;
        }


        // Read point on individual processors to determine merge tolerance
        // (otherwise single cell domains might give problems)

        const boundBox bb = procBounds(args, databases, regionDir);
        const scalar mergeDist = mergeTol*bb.mag();

        Info<< "Overall mesh bounding box  : " << bb << nl
            << "Relative tolerance         : " << mergeTol << nl
            << "Absolute matching distance : " << mergeDist << nl
            << endl;


        // Addressing from processor to reconstructed case
        labelListList cellProcAddressing(nProcs);
        labelListList faceProcAddressing(nProcs);
        labelListList pointProcAddressing(nProcs);
        labelListList boundaryProcAddressing(nProcs);

        // Internal faces on the final reconstructed mesh
        label masterInternalFaces;

        // Owner addressing on the final reconstructed mesh
        labelList masterOwner;

        {
            // Construct empty mesh.
            Info<< "Constructing empty mesh to add to." << nl << endl;
            fvMesh masterMesh
            (
                IOobject
                (
                    regionName,
                    runTime.timeName(),
                    runTime,
                    IOobject::NO_READ
                ),
                xferCopy(pointField()),
                xferCopy(faceList()),
                xferCopy(cellList())
            );

            for (label proci = 0; proci < nProcs; proci++)
            {
                Info<< "Reading mesh to add from "
                    << databases[proci].caseName()
                    << " for time = " << databases[proci].timeName()
                    << nl << endl;

                fvMesh meshToAdd
                (
                    IOobject
                    (
                        regionName,
                        databases[proci].timeName(),
                        databases[proci]
                    )
                );

                // Initialize its addressing
                cellProcAddressing[proci] = identity(meshToAdd.nCells());
                faceProcAddressing[proci] = identity(meshToAdd.nFaces());
                pointProcAddressing[proci] = identity(meshToAdd.nPoints());
                boundaryProcAddressing[proci] =
                    identity(meshToAdd.boundaryMesh().size());


                // Find geometrically shared points/faces.
                autoPtr<faceCoupleInfo> couples = determineCoupledFaces
                (
                    fullMatch,
                    proci,
                    masterMesh,
                    meshToAdd,
                    mergeDist
                );


                // Add elements to mesh
                Info<< "Adding to master mesh" << nl << endl;

                autoPtr<mapAddedPolyMesh> map = fvMeshAdder::add
                (
                    masterMesh,
                    meshToAdd,
                    couples
                );

                // Update all addressing so xxProcAddressing points to correct
                // item in masterMesh.

                // Processors that were already in masterMesh
                for (label mergedI = 0; mergedI < proci; mergedI++)
                {
                    renumber(map().oldCellMap(), cellProcAddressing[mergedI]);
                    renumber(map().oldFaceMap(), faceProcAddressing[mergedI]);
                    renumber(map().oldPointMap(), pointProcAddressing[mergedI]);
                    // Note: boundary is special since can contain -1.
                    renumber
                    (
                        map().oldPatchMap(),
                        boundaryProcAddressing[mergedI]
                    );
                }

                // Added processor
                renumber(map().addedCellMap(), cellProcAddressing[proci]);
                renumber(map().addedFaceMap(), faceProcAddressing[proci]);
                renumber(map().addedPointMap(), pointProcAddressing[proci]);
                renumber(map().addedPatchMap(), boundaryProcAddressing[proci]);

                Info<< endl;
            }

            // See if any points on the mastermesh have become connected
            // because of connections through processor meshes.
            mergeSharedPoints(mergeDist, masterMesh, pointProcAddressing);

            // Save some properties on the reconstructed mesh
            masterInternalFaces = masterMesh.nInternalFaces();
            masterOwner = masterMesh.faceOwner();


            Info<< "\nWriting merged mesh to "
                << runTime.path()/runTime.timeName()
                << nl << endl;

            if (!masterMesh.write())
            {
                FatalErrorInFunction
                    << "Failed writing polyMesh."
                    << exit(FatalError);
            }

            if (writeCellDist)
            {
                writeCellDistance(runTime, masterMesh, cellProcAddressing);
            }
        }


        // Write the addressing

        Info<< "Reconstructing the addressing from the processor meshes"
            << " to the newly reconstructed mesh" << nl << endl;

        forAll(databases, proci)
        {
            Info<< "Reading processor " << proci << " mesh from "
                << databases[proci].caseName() << endl;

            polyMesh procMesh
            (
                IOobject
                (
                    regionName,
                    databases[proci].timeName(),
                    databases[proci]
                )
            );


            // From processor point to reconstructed mesh point

            Info<< "Writing pointProcAddressing to "
                << databases[proci].caseName()
                  /procMesh.facesInstance()
                  /polyMesh::meshSubDir
                << endl;

            labelIOList
            (
                IOobject
                (
                    "pointProcAddressing",
                    procMesh.facesInstance(),
                    polyMesh::meshSubDir,
                    procMesh,
                    IOobject::NO_READ,
                    IOobject::NO_WRITE,
                    false                       // Do not register
                ),
                pointProcAddressing[proci]
            ).write();


            // From processor face to reconstructed mesh face

            Info<< "Writing faceProcAddressing to "
                << databases[proci].caseName()
                  /procMesh.facesInstance()
                  /polyMesh::meshSubDir
                << endl;

            labelIOList faceProcAddr
            (
                IOobject
                (
                    "faceProcAddressing",
                    procMesh.facesInstance(),
                    polyMesh::meshSubDir,
                    procMesh,
                    IOobject::NO_READ,
                    IOobject::NO_WRITE,
                    false                       // Do not register
                ),
                faceProcAddressing[proci]
            );

            // Now add turning index to faceProcAddressing.
            // See reconstructPar for meaning of turning index.
            forAll(faceProcAddr, procFacei)
            {
                label masterFacei = faceProcAddr[procFacei];

                if
                (
                   !procMesh.isInternalFace(procFacei)
                 && masterFacei < masterInternalFaces
                )
                {
                    // proc face is now external but used to be internal face.
                    // Check if we have owner or neighbour.

                    label procOwn = procMesh.faceOwner()[procFacei];
                    label masterOwn = masterOwner[masterFacei];

                    if (cellProcAddressing[proci][procOwn] == masterOwn)
                    {
                        // No turning. Offset by 1.
                        faceProcAddr[procFacei]++;
                    }
                    else
                    {
                        // Turned face.
                        faceProcAddr[procFacei] =
                            -1 - faceProcAddr[procFacei];
                    }
                }
                else
                {
                    // No turning. Offset by 1.
                    faceProcAddr[procFacei]++;
                }
            }

            faceProcAddr.write();


            // From processor cell to reconstructed mesh cell

            Info<< "Writing cellProcAddressing to "
                << databases[proci].caseName()
                  /procMesh.facesInstance()
                  /polyMesh::meshSubDir
                << endl;

            labelIOList
            (
                IOobject
                (
                    "cellProcAddressing",
                    procMesh.facesInstance(),
                    polyMesh::meshSubDir,
                    procMesh,
                    IOobject::NO_READ,
                    IOobject::NO_WRITE,
                    false                       // Do not register
                ),
                cellProcAddressing[proci]
            ).write();



            // From processor patch to reconstructed mesh patch

            Info<< "Writing boundaryProcAddressing to "
                << databases[proci].caseName()
                  /procMesh.facesInstance()
                  /polyMesh::meshSubDir
                << endl;

            labelIOList
            (
                IOobject
                (
                    "boundaryProcAddressing",
                    procMesh.facesInstance(),
                    polyMesh::meshSubDir,
                    procMesh,
                    IOobject::NO_READ,
                    IOobject::NO_WRITE,
                    false                       // Do not register
                ),
                boundaryProcAddressing[proci]
            ).write();

            Info<< endl;
        }
    }


    Info<< "End.\n" << endl;

    return 0;
}


// ************************************************************************* //