1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
|
README_USERD_IN_BUFFERS
========================
Five optional routines for normal elements,
USERD_get_part_coords_in_buffers |
USERD_get_part_node_ids_in_buffers |
USERD_get_part_elements_by_type_in_buffers |If any of these are implemented,
USERD_get_part_element_ids_by_type_in_buffers |all 5 of them must be implemented
USERD_get_var_by_component_in_buffers |
one optional routine for nsided elements,
USERD_get_nsided_conn_in_buffers
and one optional routine for nfaced elements,
USERD_get_nfaced_conn_in_buffers
can be added into any API 2.* reader to be used by the
Unstructured Auto Distribute capability in EnSight 8.2 and later.
Unstructured Auto Distribute is a capability requiring Server of Servers (SOS)
that will partition an unstructured model for you automatically across a set of
servers.
If you do not implement the routines listed above (and described below) in your
reader, EnSight can still perform this operation but will require much more memory on
each server to read in the data (somewhat like each server having to read the
whole model). You will however, get the execution advantage of having your model
partitioned across multiple servers.
If you do implement these routines in your reader (in a proper manner), you
should be able to not only get the execution advantages, but also memory usage
on each server which is proportional to the subset that it is assigned to deal with.
Note that the optional routines are functionally quite similar
to the following functions. And thus their implementation should
not be too difficult to add to any existing reader that has already
implemented these:
------------------------------------------
USERD_get_part_coords
USERD_get_part_node_ids
USERD_get_part_elements_by_type
USERD_get_part_element_ids_by_type
USERD_get_var_by_component
USERD_get_nsided_conn
USERD_get_nfaced_conn
Routine Details:
================
/*--------------------------------------------------------------------
* USERD_get_part_coords_in_buffers -
*--------------------------------------------------------------------
*
* Get the coordinates for an unstructured part in buffers.
*
* (IN) part_number = The part number
*
* (1-based index of part table, namely:
*
* 1 ... Numparts_available.
*
* It is NOT the part_id that
* is loaded in USERD_get_gold_part_build_info)
*
* (IN) first = TRUE if first invocation of a buffered set.
* Will be FALSE for all subsequent invocations
* of the set. This is so you can open files, get to
* the correct starting spot, initialize, etc.
*
* (IN) n_beg = Zero based, first node index
* of the buffered set
*
* (IN) n_end = Zero based, last node index
* of the buffered set
*
* Thus, for first five nodes:
* n_beg = 0
* n_end = 4
* total_number = (n_end - n_beg) + 1 = (4 - 0) + 1 = 5
*
* for second five nodes, would be:
* n_beg = 5
* n_end = 9
* total_number = (n_end - n_beg) + 1 = (9 - 5) + 1 = 5
*
* for all nodes of a part, would be:
* n_beg = 0
* n_end = num_nodes - 1
*
* (IN) buffer_size = The size of the buffer.
* Namely: coord_array[3][buffer_size]
*
* (OUT) coord_array = 2D float buffer array which is set up to hold
* x,y,z coordinates of nodes.
*
* (IMPORTANT: the second dimension of of this array is 0-based!!!)
*
* (IMPORTANT: in the sister routine (USERD_get_part_coords) - which
* does not use buffers. This array is 1-based. So pay attention.)
*
* (Array will have been allocated
* 3 by buffer_size long
*
* Example, if we had a part with 645 nodes and the buffer size was set to 200
*
* first invocation:
* first = TRUE Will be TRUE the first time!
* n_beg = 0
* n_end = 644
* buffer_size = 200
* coord_array[3][200] fill with values for nodes 1 - 200 (zero-based)
* *num_returned = 200 set this
* return(0) return this (indicates more to do)
*
* second invocation: which occurs because we returned a 0 last time
* first = FALSE will now be FALSE
* n_beg = 0
* n_end = 644
* buffer_size = 200
* coord_array[3][200] fill with values for nodes 201 - 400 (zero-based)
* *num_returned = 200 set this
* return(0) return this (indicates more to do)
*
* third invocation: which occurs because we returned a 0 last time
* first = FALSE will still be FALSE
* n_beg = 0
* n_end = 644
* buffer_size = 200
* coord_array[3][200] fill with values for nodes 401 - 600 (zero-based)
* *num_returned = 200 set this
* return(0) return this (indicates more to do)
*
* fourth invocation: which occurs because we returned a 0 last time
* first = FALSE will still be FALSE
* n_beg = 0
* n_end = 644
* buffer_size = 200
* coord_array[3][200] fill with values for nodes 601 - 645 (zero-based)
* *num_returned = 45 set this
* return(1) return this (indicates done!)
*
* (OUT) *num_returned = The number of nodes whose coordinates are returned
* in the buffer. This will normally be equal to
* buffer_size except for that last buffer -
* which could be less than a full buffer.
*
* returns 0 if got some, more to do
* 1 if got some, done
* -1 if an error
*
* Notes:
* * This will be based on Current_time_step
*
* * Not called unless number_of_nodes for the part > 0
*
* * Again, make sure each buffer is zero based. For our example above:
*
* Invocation:
* 1 2 3 4
* ------- ------- -------- -------
* coord_array[0][0] x for node 1 node 201 node 401 node 601
* coord_array[1][0] y for " " " "
* coord_array[2][0] z for " " " "
*
* coord_array[0][1] x for node 2 node 202 node 402 node 602
* coord_array[1][1] y for " " " "
* coord_array[2][1] z for " " " "
*
* ...
*
* coord_array[0][199] x for node 200 node 400 node 600 node 645
* coord_array[1][199] y for " " " "
* coord_array[2][199] z for " " " "
*--------------------------------------------------------------------*/
int
USERD_get_part_coords_in_buffers(int part_number,
float **coord_array,
int first,
int n_beg,
int n_end,
int buffer_size,
int *num_returned)
/*--------------------------------------------------------------------
* USERD_get_part_node_ids_in_buffers -
*--------------------------------------------------------------------
*
* Get the node ids for an unstructured part in buffers.
*
* (IN) part_number = The part number
*
* (1-based index of part table, namely:
*
* 1 ... Numparts_available.
*
* It is NOT the part_id that
* is loaded in USERD_get_gold_part_build_info)
*
* (IN) first = TRUE if first invocation of a buffered set.
* Will be FALSE for all subsequent invocations
* of the set. This is so you can open files, get to
* the correct starting spot, initialize, etc.
*
* (IN) n_beg = Zero based, first node index
* of the buffered set
*
* (IN) n_end = Zero based, last node index
* of the buffered set
*
* Thus, for first five nodes:
* n_beg = 0
* n_end = 4
* total_number = (n_end - n_beg) + 1 = (4 - 0) + 1 = 5
*
* for second five nodes, would be:
* n_beg = 5
* n_end = 9
* total_number = (n_end - n_beg) + 1 = (9 - 5) + 1 = 5
*
* for all nodes of a part, would be:
* n_beg = 0
* n_end = num_nodes - 1
*
* (IN) buffer_size = The size of the buffer.
* Namely: nodeid_array[buffer_size]
*
* (OUT) nodeid_array = 1D buffer array which is set up to hold
* node ids of nodes
*
* (IMPORTANT: this array is 0-based!!!)
*
* (IMPORTANT: in the sister routine (USERD_get_part_node_ids) - which
* does not use buffers. This array is 1-based. So pay attention.)
*
* (Array will have been allocated
* buffer_size long)
*
* Example, if we had a part with 645 nodes and the buffer size was set to 200
*
* first invocation:
* first = TRUE Will be TRUE the first time!
* n_beg = 0
* n_end = 644
* buffer_size = 200
* nodeid_array[200] fill with values for nodes 1 - 200 (zero-based)
* *num_returned = 200 set this
* return(0) return this (indicates more to do)
*
* second invocation: which occurs because we returned a 0 last time
* first = FALSE will now be FALSE
* n_beg = 0
* n_end = 644
* buffer_size = 200
* nodeid_array[200] fill with values for nodes 201 - 400 (zero-based)
* *num_returned = 200 set this
* return(0) return this (indicates more to do)
*
* third invocation: which occurs because we returned a 0 last time
* first = FALSE will still be FALSE
* n_beg = 0
* n_end = 644
* buffer_size = 200
* nodeid_array[200] fill with values for nodes 401 - 600 (zero-based)
* *num_returned = 200 set this
* return(0) return this (indicates more to do)
*
* fourth invocation: which occurs because we returned a 0 last time
* first = FALSE will still be FALSE
* n_beg = 0
* n_end = 644
* buffer_size = 200
* nodeid_array[200] fill with values for nodes 601 - 645 (zero-based)
* *num_returned = 45 set this
* return(1) return this (indicates done!)
*
*
* (OUT) *num_returned = The number of nodes whose ids are returned
* in the buffer. This will normally be equal
* to buffer_size except for that last buffer
* - which could be less than a full buffer.
*
* returns 0 if got some, more to do
* 1 if got some, done
* -1 if an error
*
* Notes:
* * This will be based on Current_time_step
*
* * Not called unless number_of_nodes for the part > 0
*
* * Again, make sure each buffer is zero based. For our example above:
*
* Invocation:
* 1 2 3 4
* ------- ------- -------- -------
* nodeid_array[0] id for node 1 node 201 node 401 node 601
*
* nodeid_array[1] id for node 2 node 202 node 402 node 602
*
* ...
*
* nodeid_array[199] id for node 200 node 400 node 600 node 645
*--------------------------------------------------------------------*/
int
USERD_get_part_node_ids_in_buffers(int part_number,
int *nodeid_array,
int first,
int n_beg,
int n_end,
int buffer_size,
int *num_returned)
/*--------------------------------------------------------------------
* USERD_get_part_elements_by_type_in_buffers -
*--------------------------------------------------------------------
*
* Gets the connectivities for the elements of a particular type
* in an unstructured part in buffers
*
* (IN) part_number = The part number
*
* (1-based index of part table, namely:
*
* 1 ... Numparts_available.
*
* It is NOT the part_id that
* is loaded in USERD_get_gold_part_build_info)
*
* (IN) element_type = One of the following (See global_extern.h)
* Z_POINT node point element
* Z_BAR02 2 node bar
* Z_BAR03 3 node bar
* Z_TRI03 3 node triangle
* Z_TRI06 6 node triangle
* Z_QUA04 4 node quad
* Z_QUA08 8 node quad
* Z_TET04 4 node tetrahedron
* Z_TET10 10 node tetrahedron
* Z_PYR05 5 node pyramid
* Z_PYR13 13 node pyramid
* Z_PEN06 6 node pentahedron
* Z_PEN15 15 node pentahedron
* Z_HEX08 8 node hexahedron
* Z_HEX20 20 node hexahedron
*
* Starting at API 2.01:
* ====================
* Z_G_POINT ghost node point element
* Z_G_BAR02 2 node ghost bar
* Z_G_BAR03 3 node ghost bar
* Z_G_TRI03 3 node ghost triangle
* Z_G_TRI06 6 node ghost triangle
* Z_G_QUA04 4 node ghost quad
* Z_G_QUA08 8 node ghost quad
* Z_G_TET04 4 node ghost tetrahedron
* Z_G_TET10 10 node ghost tetrahedron
* Z_G_PYR05 5 node ghost pyramid
* Z_G_PYR13 13 node ghost pyramid
* Z_G_PEN06 6 node ghost pentahedron
* Z_G_PEN15 15 node ghost pentahedron
* Z_G_HEX08 8 node ghost hexahedron
* Z_G_HEX20 20 node ghost hexahedron
* Z_NSIDED n node ghost nsided polygon
* Z_NFACED n face ghost nfaced polyhedron
*
* Starting at API 2.02:
* ====================
* Z_NSIDED n node nsided polygon
* Z_NFACED n face nfaced polyhedron
* Z_G_NSIDED n node ghost nsided polygon
* Z_G_NFACED n face ghost nfaced polyhedron
*
* (IN) first = TRUE if first invocation of a buffered set.
* Will be FALSE for all subsequent invocations
* of the set. This is so you can open files, get to
* the correct starting spot, initialize, etc.
*
* (IN) e_beg = Zero based, first element number
* of the buffered set
*
* (IN) e_end = Zero based, last element number
* of the buffered set
*
* Thus, for first five elements of a type:
* e_beg = 0
* e_end = 4
* total_number = (e_end - e_beg) + 1 = (4 - 0) + 1 = 5
*
* for second five elements of a type, would be:
* e_beg = 5
* e_end = 9
* total_number = (e_end - e_beg) + 1 = (9 - 5) + 1 = 5
*
* for all elements of the type of a part, would be:
* n_beg = 0
* n_end = num_elements_of_type - 1
*
* (IN) buffer_size = The size of the buffer.
* Namely: conn_array[buffer_size][element_size]
*
* (OUT) conn_array = 2D buffer array which is set up to hold
* connectivity of elements of the type.
*
* (Array will have been allocated
* buffer_size of
* the type by connectivity length
* of the type)
*
* ex) The allocated dimensions available
* for this routine will be:
* conn_array[buffer_size][3] when called with Z_TRI03
*
* conn_array[buffer_size][4] when called with Z_QUA04
*
* conn_array[buffer_size][8] when called with Z_HEX08
*
* etc.
*
* * Example, (if 158 quad elements, and buffer size is 200)
*
* (get all 158 quad4s in one invocation)
* element_type = Z_QUA04
* first = TRUE Will be TRUE the first time!
* e_beg = 0 (zero based, first element index)
* e_end = 157 (zero based, last element index)
* buffer_size = 200
* conn_array[200][4] Use first 158 locations of the array
* *num_returned = 158 set this
* return(1) return this (indicates no more to do)
*
* * Example, (if 158 quad elements, and buffer size is 75)
*
* first invocation:
* element_type = Z_QUA04
* first = TRUE Will be TRUE the first time!
* e_beg = 0
* e_end = 157
* buffer_size = 75
* conn_array[75][4] load in conn for elements 1 - 75
* *num_returned = 75 set this
* return(0) return this (indicates more to do)
*
* second invocation:
* element_type = Z_QUA04
* first = TRUE Will be TRUE the first time!
* e_beg = 0
* e_end = 157
* buffer_size = 75
* conn_array[75][4] load in conn for elements 76 - 150
* *num_returned = 75 set this
* return(0) return this (indicates more to do)
*
* third invocation:
* element_type = Z_QUA04
* first = TRUE Will be TRUE the first time!
* e_beg = 0
* e_end = 157
* buffer_size = 75
* conn_array[75][4] load in conn for elements 151 - 158
* *num_returned = 8 set this
* return(1) return this (indicates no more to do)
*
*
* (OUT) *num_returned = The number of elements whose connectivities
* are returned in the buffer. This will
* normally be equal to buffer_size except for
* that last buffer - which could be less than
* a full buffer.
*
* returns 0 if got some, more to do
* 1 if got some, done
* -1 if an error
*
* Notes:
* * This will be based on Current_time_step
*
* * Again, make sure each buffer is zero based. For our example using buffers above:
*
* Invocation:
* 1 2 3
* ------- ------- --------
* conn_array[0][0] node 1 in conn for quad 1 quad 76 quad 151
* conn_array[0][1] node 2 in conn for quad 1 quad 76 quad 151
* conn_array[0][2] node 3 in conn for quad 1 quad 76 quad 151
* conn_array[0][3] node 4 in conn for quad 1 quad 76 quad 151
*
* conn_array[1][0] node 1 in conn for quad 2 quad 77 quad 152
* conn_array[1][1] node 2 in conn for quad 2 quad 77 quad 152
* conn_array[1][2] node 3 in conn for quad 2 quad 77 quad 152
* conn_array[1][3] node 4 in conn for quad 2 quad 77 quad 152
*
* ...
*
* conn_array[74][0] node 1 in conn for quad 75 quad 150 quad 158
* conn_array[74][1] node 2 in conn for quad 75 quad 150 quad 158
* conn_array[74][2] node 3 in conn for quad 75 quad 150 quad 158
* conn_array[74][3] node 4 in conn for quad 75 quad 150 quad 158
*--------------------------------------------------------------------*/
int
USERD_get_part_elements_by_type_in_buffers(int part_number,
int element_type,
int **conn_array,
int first,
int e_beg,
int e_end,
int buffer_size,
int *num_returned)
/*--------------------------------------------------------------------
* USERD_get_part_element_ids_by_type_in_buffers -
*--------------------------------------------------------------------
*
* Gets the ids for the elements of a particular type
* in an unstructured part in buffers
*
* (IN) part_number = The part number
*
* (1-based index of part table, namely:
*
* 1 ... Numparts_available.
*
* It is NOT the part_id that
* is loaded in USERD_get_gold_part_build_info)
*
* (IN) element_type = One of the following (See global_extern.h)
* Z_POINT node point element
* Z_BAR02 2 node bar
* Z_BAR03 3 node bar
* Z_TRI03 3 node triangle
* Z_TRI06 6 node triangle
* Z_QUA04 4 node quad
* Z_QUA08 8 node quad
* Z_TET04 4 node tetrahedron
* Z_TET10 10 node tetrahedron
* Z_PYR05 5 node pyramid
* Z_PYR13 13 node pyramid
* Z_PEN06 6 node pentahedron
* Z_PEN15 15 node pentahedron
* Z_HEX08 8 node hexahedron
* Z_HEX20 20 node hexahedron
*
* Starting at API 2.01:
* ====================
* Z_G_POINT ghost node point element
* Z_G_BAR02 2 node ghost bar
* Z_G_BAR03 3 node ghost bar
* Z_G_TRI03 3 node ghost triangle
* Z_G_TRI06 6 node ghost triangle
* Z_G_QUA04 4 node ghost quad
* Z_G_QUA08 8 node ghost quad
* Z_G_TET04 4 node ghost tetrahedron
* Z_G_TET10 10 node ghost tetrahedron
* Z_G_PYR05 5 node ghost pyramid
* Z_G_PYR13 13 node ghost pyramid
* Z_G_PEN06 6 node ghost pentahedron
* Z_G_PEN15 15 node ghost pentahedron
* Z_G_HEX08 8 node ghost hexahedron
* Z_G_HEX20 20 node ghost hexahedron
* Z_NSIDED n node ghost nsided polygon
* Z_NFACED n face ghost nfaced polyhedron
*
* Starting at API 2.02:
* ====================
* Z_NSIDED n node nsided polygon
* Z_NFACED n face nfaced polyhedron
* Z_G_NSIDED n node ghost nsided polygon
* Z_G_NFACED n face ghost nfaced polyhedron
*
* (IN) first = TRUE if first invocation of a buffered set.
* Will be FALSE for all subsequent invocations
* of the set. This is so you can open files, get to
* the correct starting spot, initialize, etc.
*
* (IN) e_beg = Zero based, first element number
* of the buffered set
*
* (IN) e_end = Zero based, last element number
* of the buffered set
*
* Thus, for first five elements of a type:
* e_beg = 0
* e_end = 4
* total_number = (e_end - e_beg) + 1 = (4 - 0) + 1 = 5
*
* for second five elements of a type, would be:
* e_beg = 5
* e_end = 9
* total_number = (e_end - e_beg) + 1 = (9 - 5) + 1 = 5
*
* for all elements of the type of a part, would be:
* n_beg = 0
* n_end = num_elements_of_type - 1
*
* (IN) buffer_size = The size of the buffer.
* Namely: elemid_array[buffer_size]
*
* (OUT) elemid_array = 1D buffer array which is set up to hold ids
* of elements of the type.
*
* (Array will have been allocated
* buffer_size long)
*
* * Example, (if 158 quad elements, and buffer size is 200)
*
* (get all 158 quad4 ids in one invocation)
* element_type = Z_QUA04
* first = TRUE Will be TRUE the first time!
* e_beg = 0 (zero based, first element index)
* e_end = 157 (zero based, last element index)
* buffer_size = 200
* elemeid_array[200] Use first 158 locations of the array
* *num_returned = 158 set this
* return(1) return this (indicates no more to do)
*
* * Example, (if 158 quad elements, and buffer size is 75)
*
* first invocation:
* element_type = Z_QUA04
* first = TRUE Will be TRUE the first time!
* e_beg = 0
* e_end = 157
* buffer_size = 75
* elemid_array[75] load in ids for elements 1 - 75
* *num_returned = 75 set this
* return(0) return this (indicates more to do)
*
* second invocation:
* element_type = Z_QUA04
* first = TRUE Will be TRUE the first time!
* e_beg = 0
* e_end = 157
* buffer_size = 75
* elemid_array[75] load in ids for elements 76 - 150
* *num_returned = 75 set this
* return(0) return this (indicates more to do)
*
* third invocation:
* element_type = Z_QUA04
* first = TRUE Will be TRUE the first time!
* e_beg = 0
* e_end = 157
* buffer_size = 75
* elemid_array[75] load in ids for elements 151 - 158
* *num_returned = 8 set this
* return(1) return this (indicates no more to do)
*
*
* (OUT) *num_returned = The number of elements whose ids are returned
* in the buffer. This will normally be equal
* to buffer_size except for that last buffer
* - which could be less than a full buffer.
*
* returns 0 if got some, more to do
* 1 if got some, done
* -1 if an error
*
* Notes:
* * This will be based on Current_time_step
*
* * Again, make sure each buffer is zero based. For our example using buffers above:
*
* Invocation:
* 1 2 3
* ------- ------- --------
* elemid_array[0] elem id for quad 1 quad 76 quad 151
*
* elemid_array[1] elem id for quad 2 quad 77 quad 152
*
* ...
*
* elemid_array[74] elem id for quad 75 quad 150 quad 158
*--------------------------------------------------------------------*/
int
USERD_get_part_element_ids_by_type_in_buffers(int part_number,
int element_type,
int *elemid_array,
int first,
int e_beg,
int e_end,
int buffer_size,
int *num_returned)
/*--------------------------------------------------------------------
* USERD_get_var_by_component_in_buffers - used by unstructured parts
*--------------------------------------------------------------------
*
* if Z_PER_NODE:
* Get the component value at each node for a given variable in the part
* in buffers.
*
* or if Z_PER_ELEM:
* Get the component value at each element of a specific part and type for
* a given variable in buffers.
*
* (IN) which_variable = The variable number
*
* (IN) which_part Since EnSight Version 7.4
* -------------------------
* = The part number
*
* (1-based index of part table, namely:
*
* 1 ... Numparts_available.
*
* It is NOT the part_id that
* is loaded in USERD_get_gold_part_build_info)
*
* Prior to EnSight Version 7.4
* ----------------------------
* = The part id This is the part_id label loaded
* in USERD_get_gold_part_build_inf\o.
* It is NOT the part table index.
*
* (IN) var_type = Z_SCALAR
* Z_VECTOR
* Z_TENSOR ( symmetric tensor)
* Z_TENSOR9 (asymmetric tensor)
*
* (IN) which_type
*
* if Z_PER_NODE: Not used
*
* if Z_PER_ELEM: = The element type
* Z_POINT node point element
* Z_BAR02 2 node bar
* Z_BAR03 3 node bar
* Z_TRI03 3 node triangle
* Z_TRI06 6 node triangle
* Z_QUA04 4 node quad
* Z_QUA08 8 node quad
* Z_TET04 4 node tetrahedron
* Z_TET10 10 node tetrahedron
* Z_PYR05 5 node pyramid
* Z_PYR13 13 node pyramid
* Z_PEN06 6 node pentahedron
* Z_PEN15 15 node pentahedron
* Z_HEX08 8 node hexahedron
* Z_HEX20 20 node hexahedron
*
* Starting at API 2.01:
* ====================
* Z_G_POINT ghost node point element
* Z_G_BAR02 2 node ghost bar
* Z_G_BAR03 3 node ghost bar
* Z_G_TRI03 3 node ghost triangle
* Z_G_TRI06 6 node ghost triangle
* Z_G_QUA04 4 node ghost quad
* Z_G_QUA08 8 node ghost quad
* Z_G_TET04 4 node ghost tetrahedron
* Z_G_TET10 10 node ghost tetrahedron
* Z_G_PYR05 5 node ghost pyramid
* Z_G_PYR13 13 node ghost pyramid
* Z_G_PEN06 6 node ghost pentahedron
* Z_G_PEN15 15 node ghost pentahedron
* Z_G_HEX08 8 node ghost hexahedron
* Z_G_HEX20 20 node ghost hexahedron
* Starting at API 2.02:
* ====================
* Z_NSIDED n node nsided polygon
* Z_NFACED n face nfaced polyhedron
* Z_G_NSIDED n node ghost nsided polygon
* Z_G_NFACED n face ghost nfaced polyhedron
*
*
*
* (IN) imag_data = TRUE if imag component
* FALSE if real component
*
* (IN) component = The component: (0 if Z_SCALAR)
* (0 - 2 if Z_VECTOR)
* (0 - 5 if Z_TENSOR)
* (0 - 8 if Z_TENSOR9)
*
* * 6 Symmetric Indicies, 0:5 *
* * ---------------------------- *
* * | 11 12 13 | | 0 3 4 | *
* * | | | | *
* * T = | 22 23 | = | 1 5 | *
* * | | | | *
* * | 33 | | 2 | *
*
* * 9 General Indicies, 0:8 *
* * ---------------------------- *
* * | 11 12 13 | | 0 1 2 | *
* * | | | | *
* * T = | 21 22 23 | = | 3 4 5 | *
* * | | | | *
* * | 31 32 33 | | 6 7 8 | *
*
* (IN) ne_beg
* if Z_PER_NODE: = Zero based, first node index of the buffered set
* if Z_PER_ELEM: = Zero based, first element index of the buffered set
*
* (IN) ne_end
* if Z_PER_NODE: = Zero based, last node index of the buffered set
* if Z_PER_ELEM: = Zero based, last element index of the buffered set
*
* Thus, for first five elements or nodes:
* e_beg = 0
* e_end = 4
* total_number = (e_end - e_beg) + 1 = (4 - 0) + 1 = 5
*
* for second five elements or nodes, would be:
* e_beg = 5
* e_end = 9
* total_number = (e_end - e_beg) + 1 = (9 - 5) + 1 = 5
*
* for all elements or nodes of a part, would be:
* n_beg = 0
* n_end = num_elements_or_nodes - 1
*
* (IN) first = TRUE if first invocation of a buffered set.
* Will be FALSE for all subsequent invocations
* of the set. This is so you can open files, get to
* the correct starting spot, initialize, etc.
*
* (IN) buffer_size = The size of the buffer.
* Namely: var_array[buffer_size]
*
* (IN) leftside = TRUE if current time is at a timestep or
* when getting the left side of a time
* span that encloses the current time.
* = FALSE when getting the right side of a time
* span that encloses the current time.
*
* Timeline:
* step1 step2 step3
* |-------------|--------------|-------... requires no interpolation
* ^ get values at step2 (leftside = TRUE)
* current time (leftside = TRUE)
*
*
* Timeline:
* step1 step2 step3
* |-------------|--------------|-------... requires interpolation
* ^ get values at step2 (leftside = TRUE)
* current time and get values at step3 (leftside = FALSE)
*
* Note that it would generally be easier for this routine if EnSight got all
* of the left side, then all of the right side, and then did its
* interpolation. But, in the spirit of doing things in buffers (to save
* memory) it gets a left side buffer (and the corresponding right side
* buffer and interpolates these), if needed, before going to the next
* buffer of the set. Thus, you need to be able to handle that situation.
*
* Note also that EnSight will have called the routine to change the current
* time step between the two invocations when interpolation is required.
* And Ensight does the interpolating. This variable is provided so
* that you can deal with two different files or pointers between the
* corresponding invocations for the two times
*
* (OUT) var_array
*
* -----------------------------------------------------------------------
* (IMPORTANT: this array is 0-based for both Z_PER_NODE and Z_PER_ELEM!!!
* -----------------------------------------------------------------------
*
* if Z_PER_NODE: = 1D buffer array set up to hold a variable
* component value for nodes.
*
* if Z_PER_ELEM: = 1D buffer array set up to hold a variable
* component value for elements.
*
* (Array will have been allocated
* buffer_size long)
*
* Info stored in this fashion:
* var_array[0] = var component for node or element 1 of part
* var_array[1] = var component for node or element 2 of part
* var_array[2] = var component for node or element 3 of part
* etc.
*
* * Example, (if 158 quad elements with a real Z_PER_ELEM scalar,
* current time is between steps, and buffer size is 75)
*
* first invocation: (for left side of time span)
* var_type = Z_SCALAR
* which_type = Z_PER_ELEM
* imag_data = FALSE
* component = 0
* ne_beg = 0
* ne_end = 157
* first = TRUE Will be TRUE the first time!
* buffer_size = 75
* leftside = TRUE <==
* var_array[75] load in scalar value for elements 1 - 75
* *num_returned = 75 set this
* return(0) return this (indicates more to do)
*
* second invocation: (for right side of time span)
* var_type = Z_SCALAR
* which_type = Z_PER_ELEM
* imag_data = FALSE
* component = 0
* ne_beg = 0
* ne_end = 157
* first = TRUE Note: Will still be TRUE (because is right side)
* buffer_size = 75
* leftside = FALSE <==
* var_array[75] load in scalar value for elements 1 - 75
* *num_returned = 75 set this
* return(0) return this (indicates more to do)
*
* -------------------------------
* third invocation: (for left side of time span)
* var_type = Z_SCALAR
* which_type = Z_PER_ELEM
* imag_data = FALSE
* component = 0
* ne_beg = 0
* ne_end = 157
* first = FALSE Will be FALSE now
* buffer_size = 75
* leftside = TRUE <==
* var_array[75] load in scalar value for elements 76 - 150
* *num_returned = 75 set this
* return(0) return this (indicates more to do)
*
* fourth invocation: (for right side of time span)
* var_type = Z_SCALAR
* which_type = Z_PER_ELEM
* imag_data = FALSE
* component = 0
* ne_beg = 0
* ne_end = 157
* first = FALSE
* buffer_size = 75
* leftside = FALSE <==
* var_array[75] load in scalar value for elements 76 - 150
* *num_returned = 75 set this
* return(0) return this (indicates more to do)
*
*------------------------------------
* fifth invocation: (for left side of time span)
* var_type = Z_SCALAR
* which_type = Z_PER_ELEM
* imag_data = FALSE
* component = 0
* ne_beg = 0
* ne_end = 157
* first = FALSE Will still be FALSE
* buffer_size = 75
* leftside = TRUE <==
* var_array[75] load in scalar value for elements 151 - 158
* *num_returned = 8 set this
* return(1) return this (indicates no more to do)
*
* sixth invocation: (for right side of time span)
* var_type = Z_SCALAR
* which_type = Z_PER_ELEM
* imag_data = FALSE
* component = 0
* ne_beg = 0
* ne_end = 157
* first = FALSE
* buffer_size = 75
* leftside = FALSE <==
* var_array[75] load in scalar value for elements 151 - 158
* *num_returned = 8 set this
* return(1) return this (indicates no more to do)
*
*
* (OUT) *num_returned = The number of nodes or elements whose variable
* values are returned in the buffer. This will
* normally be equal to buffer_size except for
* that last buffer - which could be less than
* a full buffer.
*
* returns 0 if got some, more to do
* 1 if got some, done
* -1 if an error
*
* Notes:
* * This will be based on Current_time_step
*
* * Again, make sure each buffer is zero based. For our example using buffers above:
*
* Invocation:
* ---------------- ------------------ -------------------
* 1 2 3 4 5 6
* ------- ------- -------- -------- --------- ---------
* var_array[0] scalar of quad 1L quad 1R quad 76L quad 76R quad 151L quad 151R
*
* var_array[1] scalar of quad 2L quad 2R quad 77L quad 77R quad 152L quad 152R
*
* ...
*
* var_array[74] scalar of quad 75L quad 75R quad 150L quad 150R quad 158L quad 158R
*
* Where: L indicates left time step
* R indicates right time step
*--------------------------------------------------------------------*/
int
USERD_get_var_by_component_in_buffers(int which_variable,
int which_part,
int var_type,
int which_type,
int imag_data,
int component,
float *var_array,
int first,
int ne_beg,
int ne_end,
int buffer_size,
int leftside,
int *num_returned)
/*--------------------------------------------------------------------
* USERD_get_nsided_conn_in_buffers -
*--------------------------------------------------------------------
*
* Gets the two arrays containing the connectivity information
* of nsided elements in buffers
*
* (IN) part_number = The part number
*
* (1-based index of part table, namely:
*
* 1 ... Numparts_available.
*
* It is NOT the part_id that
* is loaded in USERD_get_gold_part_build_info)
*
* (IN) first = TRUE if first invocation of a buffered set.
* Will be FALSE for all subsequent invocations
* of the set. This is so you can open files,
* get to the correct starting spot,
* initialize, etc.
*
* (IN) e_beg = Zero based, first element number
* of the buffered set
*
* (IN) e_end = Zero based, last element number
* of the buffered set
*
* Thus, for first five elements of a type:
* e_beg = 0
* e_end = 4
* total_number = (e_end - e_beg) + 1 = (4 - 0) + 1 = 5
*
* for second five elements of a type, would be:
* e_beg = 5
* e_end = 9
* total_number = (e_end - e_beg) + 1 = (9 - 5) + 1 = 5
*
* for all elements of the type of a part, would be:
* n_beg = 0
* n_end = num_elements_of_type - 1
*
* (IN) buffer_size = The size of the num_nodes_per_elem_array buffer.
* Namely: num_nodes_per_elem_array[buffer_size]
*
* (OUT) num_nodes_per_elem_array = 1D buffer array of the number of nodes
* per nsided element.
*
* (OUT) nsided_conn_array = 1D buffer array of nsided connectivies
*
* (int array will have been allocated
* long enough to hold all the nsided
* connectivities in the buffered chunk)
*
* (OUT) *num_returned = The number of elements whose connectivities
* are returned in the buffer. This will
* normally be equal to buffer_size except for
* that last buffer - which could be less than
* a full buffer.
*
* Providing nsided information to Ensight:
*
* NOTE: for other nsided operations you need these first two, but we
* don't actually use them in this routine.
*
* 1. In USERD_get_gold_part_build_info, provide the number of nsided
* elements in the part.
*
* 2. In USERD_get_part_elements_by_type, provide (in the conn_array),
* the number of nodes per nsided element. (as if connectivity
* length of an nsided element is one)
*
* We do use the following:
* 3. In this routine, provide the corresponding num_nodes_per_element and
* streamed connectivities for each of the nsided elements in this
* buffered portion.
*
*
* Simple example: 5 6
* +--------+
* 3 nsided elements: /| \
* (1 4-sided / | \
* 1 3-sided / | \
* 1 7-sided) / | \ 7
* /3 |4 +
* +-----+ |
* | | |
* | | |8
* | | +
* | | /
* | | /
* | | /
* |1 |2 /9
* +-----+--------+
*
* NOTE, don't really use these first two here (See USERD_get_nsided_conn)
*
* 1. In USERD_get_gold_part_build_info:
* number_of_elements[Z_NSIDED] = 3
* .
* /|\
* |
* 2. In USERD_get_part_elements_by_type:
* length of conn_array will be: 3 x 1
*
* for element_type of Z_NSIDED:
* conn_array[0][0] = 4 (for the 4-sided element)
* conn_array[1][0] = 3 (for the 3-sided element)
* conn_array[2][0] = 7 (for the 7-sided element)
*
* Sum ===
* 14
*
* But for our example, lets assume that that our buffer is just 2
* ================
* 3. In this routine:
*
* first invocation:
* first = TRUE
* e_beg = 0
* e_end = 2
* buffer_size = 2
* num_nodes_per_elem_array[2] load it: num_nodes_per_elem_array[0] = 4
* num_nodes_per_elem_array[1] = 3
*
* nsided_conn_array[at least 7] load it: nsided_conn_array[0] = 1
* nsided_conn_array[1] = 2
* nsided_conn_array[2] = 4
* nsided_conn_array[3] = 3
*
* nsided_conn_array[4] = 3
* nsided_conn_array[5] = 4
* nsided_conn_array[6] = 5
* *num_returned = 2
* return(0) return this (indicates more to do)
*
* second invocation:
* first = FALSE
* e_beg = 0
* e_end = 2
* buffer_size = 2
* num_nodes_per_elem_array[2] load it: num_nodes_per_elem_array[0] = 7
*
* nsided_conn_array[at least 7] load it: nsided_conn_array[0] = 2
* nsided_conn_array[1] = 9
* nsided_conn_array[2] = 8
* nsided_conn_array[3] = 7
* nsided_conn_array[4] = 6
* nsided_conn_array[5] = 5
* nsided_conn_array[6] = 4
* *num_returned = 1
* return(1) return this (indicates no more to do)
*
* returns 0 if got some, more to do
* 1 if got some, done
* -1 if an error
*
* Notes:
* * This will be based on Current_time_step
*
* * Will not be called unless there are some nsided elements in the
* the part
*--------------------------------------------------------------------*/
int
USERD_get_nsided_conn_in_buffers(int part_number,
int *num_nodes_per_elem_array,
int *nsided_conn_array,
int first,
int e_beg,
int e_end,
int buffer_size,
int *num_returned)
/*--------------------------------------------------------------------
* USERD_get_nfaced_conn_in_buffers -
*--------------------------------------------------------------------
*
* Gets three arrays containing the number of faces per element,
* number of nodes per face, and connectivity per face of nfaced
* elements in buffers
*
* (IN) part_number = The part number
*
* (1-based index of part table, namely:
*
* 1 ... Numparts_available.
*
* It is NOT the part_id that
* is loaded in USERD_get_gold_part_build_info)
*
* (IN) first = TRUE if first invocation of a buffered set.
* Will be FALSE for all subsequent invocations
* of the set. This is so you can open files,
* get to the correct starting spot,
* initialize, etc.
*
* (IN) e_beg = Zero based, first element number
* of the buffered set
*
* (IN) e_end = Zero based, last element number
* of the buffered set
*
* Thus, for first five elements of a type:
* e_beg = 0
* e_end = 4
* total_number = (e_end - e_beg) + 1 = (4 - 0) + 1 = 5
*
* for second five elements of a type, would be:
* e_beg = 5
* e_end = 9
* total_number = (e_end - e_beg) + 1 = (9 - 5) + 1 = 5
*
* for all elements of the type of a part, would be:
* n_beg = 0
* n_end = num_elements_of_type - 1
*
* (IN) buffer_size = The size of the num_nodes_per_elem_array buffer.
* Namely: num_nodes_per_elem_array[buffer_size]
*
* (OUT) nfaced_fpe_array = 1D buffer array of the number of faces per nfaced
* element.
*
* (int array will have been allocated
* buffer_size long)
*
* (OUT) nfaced_npf_array = 1D buffer array of the number of nodes per face
* for nfaced elements.
*
* (int array will have been allocated long
* enough to hold a buffer's size of values)
*
* (OUT) nfaced_conn_array = 1D array of nsided face connectivies of
* nfaced elements
*
* (int array will have been allocated
* long enough to hold a buffer's worth of values)
*
* Providing nfaced information to Ensight:
*
* NOTE: for other nfaced operations you need these first two, but we
* don't actually use them in this routine.
*
* 1. In USERD_get_gold_part_build_info, provide the number of nfaced
* polyhedral elements in the part.
*
* 2. In USERD_get_part_elements_by_type, provide (in the conn_array),
* the number of faces per nfaced element. (as if connectivity
* length of an nfaced element is one)
*
* We do use the following:
* 3. In this routine, provide the corresponding number of faces per nfaced
* element, streamed number of nodes per face, and streamed face
* connectivities for each of the faces of the nfaced elements in the
* bufferred portion.
*
*
* Simple example: 11 10 12
* +--------+-----+
* 2 nfaced elements: /| |\ /|
* (1 7-faced / | | \ / |
* 1 5-sided) / | | +9 |
* / | | /| |
* /7 | 8 / | |
* +-----------+/ | | |
* | |5 | |4 | |6
* | +-----|--+--|--+
* | / | \ | /
* | / | \|/3
* | / | +
* | / | /
* |/1 |2 /
* +-----------+/
*
* Note, don't really use these first two here (See USERD_get_nfaced_conn)
*
* 1. In USERD_get_gold_part_build_info:
* number_of_elements[Z_NFACED] = 2
* .
* /|\
* |
* 2. In USERD_get_part_elements_by_type:
* length of conn_array will be: 2 x 1
* for element_type of Z_NFACED:
* conn_array[0][0] = 7 (for the 7-faced element)
* conn_array[1][0] = 5 (for the 5-faced element)
* ==
* Sum 12
*
*
* But for our simple example, lets assume that that our buffer is just 1
* so that we have multiple invocations. ================
*
* 3. In this routine:
*
* first invocation:
* first = TRUE
* e_beg = 0
* e_end = 1
* buffer_size = 1
* nfaced_fpe_array[1] load it: nfaced_fpe_array[0] = 7
*
* nfaced_npf_array[at least 7] load it: nfaced_npf_array[0] = 5
* nfaced_npf_array[1] = 5
* nfaced_npf_array[2] = 4
* nfaced_npf_array[3] = 4
* nfaced_npf_array[4] = 4
* nfaced_npf_array[5] = 4
* nfaced_npf_array[6] = 4
*
* nsided_conn_array[at least 30] load it: nsided_conn_array[0] = 7
* nsided_conn_array[1] = 8
* nsided_conn_array[2] = 9
* nsided_conn_array[3] = 10
* nsided_conn_array[4] = 11
*
* nsided_conn_array[5] = 1
* nsided_conn_array[6] = 5
* nsided_conn_array[7] = 4
* nsided_conn_array[8] = 3
* nsided_conn_array[9] = 2
*
* nsided_conn_array[10] = 1
* nsided_conn_array[11] = 2
* nsided_conn_array[12] = 8
* nsided_conn_array[13] = 7
*
* nsided_conn_array[14] = 5
* nsided_conn_array[15] = 1
* nsided_conn_array[16] = 7
* nsided_conn_array[17] = 11
*
* nsided_conn_array[18] = 4
* nsided_conn_array[19] = 5
* nsided_conn_array[20] = 11
* nsided_conn_array[21] = 10
*
* nsided_conn_array[22] = 2
* nsided_conn_array[23] = 3
* nsided_conn_array[24] = 9
* nsided_conn_array[25] = 8
*
* nsided_conn_array[26] = 3
* nsided_conn_array[27] = 4
* nsided_conn_array[28] = 10
* nsided_conn_array[29] = 9
* *num_returned = 1;
* return(0)
*
* second invocation:
* first = FALSE
* e_beg = 0
* e_end = 1
* buffer_size = 1
* nfaced_fpe_array[1] load it: nfaced_fpe_array[0] = 5
*
* nfaced_npf_array[at least 7] load it: nfaced_npf_array[0] = 3
* nfaced_npf_array[1] = 3
* nfaced_npf_array[2] = 4
* nfaced_npf_array[3] = 4
* nfaced_npf_array[4] = 4
*
* nsided_conn_array[at least 18] load it: nsided_conn_array[0] = 9
* nsided_conn_array[1] = 12
* nsided_conn_array[2] = 10
*
* nsided_conn_array[3] = 3
* nsided_conn_array[4] = 4
* nsided_conn_array[5] = 6
*
* nsided_conn_array[6] = 6
* nsided_conn_array[7] = 4
* nsided_conn_array[8] = 10
* nsided_conn_array[9] = 12
*
* nsided_conn_array[10] = 3
* nsided_conn_array[11] = 6
* nsided_conn_array[12] = 12
* nsided_conn_array[13] = 9
*
* nsided_conn_array[14] = 4
* nsided_conn_array[15] = 3
* nsided_conn_array[16] = 9
* nsided_conn_array[17] = 10
* *num_returned = 1;
* return(1)
*
* returns 0 if got some, more to do
* 1 if got some, done
* -1 if an error
*
* Notes:
* * This will be based on Current_time_step
*
* * Will not be called unless there are some nfaced elements in the
* the part
*--------------------------------------------------------------------*/
int
USERD_get_nfaced_conn_in_buffers(int part_number,
int *nfaced_fpe_array,
int *nfaced_npf_array,
int *nfaced_conn_array,
int first,
int e_beg,
int e_end,
int buffer_size,
int *num_returned)
|