File: progmesh.C

package info (click to toggle)
openfoam 4.1%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 163,028 kB
  • ctags: 58,990
  • sloc: cpp: 830,760; sh: 10,227; ansic: 8,215; xml: 745; lex: 437; awk: 194; sed: 91; makefile: 77; python: 18
file content (315 lines) | stat: -rw-r--r-- 11,330 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/*
 *  Progressive Mesh type Polygon Reduction Algorithm
 *  by Stan Melax (c) 1998
 *  Permission to use any of this code wherever you want is granted..
 *  Although, please do acknowledge authorship if appropriate.
 *
 *  See the header file progmesh.h for a description of this module
 */

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
//#include <windows.h>

#include "vector.h"
#include "list.h"
#include "progmesh.h"

#define min(x,y) (((x) <= (y)) ? (x) : (y))
#define max(x,y) (((x) >= (y)) ? (x) : (y))


/*
 *  For the polygon reduction algorithm we use data structures
 *  that contain a little bit more information than the usual
 *  indexed face set type of data structure.
 *  From a vertex we wish to be able to quickly get the
 *  neighboring faces and vertices.
 */
class Triangle;
class Vertex;

class Triangle {
  public:
        Vertex *         vertex[3]; // the 3 points that make this tri
        Vector           normal;    // unit vector othogonal to this face
                         Triangle(Vertex *v0,Vertex *v1,Vertex *v2);
                         ~Triangle();
        void             ComputeNormal();
        void             ReplaceVertex(Vertex *vold,Vertex *vnew);
        int              HasVertex(Vertex *v);
};
class Vertex {
  public:
        Vector           position; // location of point in euclidean space
        int              id;       // place of vertex in original list
        List<Vertex *>   neighbor; // adjacent vertices
        List<Triangle *> face;     // adjacent triangles
        float            objdist;  // cached cost of collapsing edge
        Vertex *         collapse; // candidate vertex for collapse
                         Vertex(Vector v,int _id);
                         ~Vertex();
        void             RemoveIfNonNeighbor(Vertex *n);
};
List<Vertex *>   vertices;
List<Triangle *> triangles;


Triangle::Triangle(Vertex *v0,Vertex *v1,Vertex *v2){
        assert(v0!=v1 && v1!=v2 && v2!=v0);
        vertex[0]=v0;
        vertex[1]=v1;
        vertex[2]=v2;
        ComputeNormal();
        triangles.Add(this);
        for(int i=0;i<3;i++) {
                vertex[i]->face.Add(this);
                for(int j=0;j<3;j++) if(i!=j) {
                        vertex[i]->neighbor.AddUnique(vertex[j]);
                }
        }
}
Triangle::~Triangle(){
        int i;
        triangles.Remove(this);
        for(i=0;i<3;i++) {
                if(vertex[i]) vertex[i]->face.Remove(this);
        }
        for(i=0;i<3;i++) {
                int i2 = (i+1)%3;
                if(!vertex[i] || !vertex[i2]) continue;
                vertex[i ]->RemoveIfNonNeighbor(vertex[i2]);
                vertex[i2]->RemoveIfNonNeighbor(vertex[i ]);
        }
}
int Triangle::HasVertex(Vertex *v) {
        return (v==vertex[0] ||v==vertex[1] || v==vertex[2]);
}
void Triangle::ComputeNormal(){
        Vector v0=vertex[0]->position;
        Vector v1=vertex[1]->position;
        Vector v2=vertex[2]->position;
        normal = (v1-v0)*(v2-v1);
        if(magnitude(normal)==0)return;
        normal = normalize(normal);
}
void Triangle::ReplaceVertex(Vertex *vold,Vertex *vnew) {
        assert(vold && vnew);
        assert(vold==vertex[0] || vold==vertex[1] || vold==vertex[2]);
        assert(vnew!=vertex[0] && vnew!=vertex[1] && vnew!=vertex[2]);
        if(vold==vertex[0]){
                vertex[0]=vnew;
        }
        else if(vold==vertex[1]){
                vertex[1]=vnew;
        }
        else {
                assert(vold==vertex[2]);
                vertex[2]=vnew;
        }
        int i;
        vold->face.Remove(this);
        assert(!vnew->face.Contains(this));
        vnew->face.Add(this);
        for(i=0;i<3;i++) {
                vold->RemoveIfNonNeighbor(vertex[i]);
                vertex[i]->RemoveIfNonNeighbor(vold);
        }
        for(i=0;i<3;i++) {
                assert(vertex[i]->face.Contains(this)==1);
                for(int j=0;j<3;j++) if(i!=j) {
                        vertex[i]->neighbor.AddUnique(vertex[j]);
                }
        }
        ComputeNormal();
}

Vertex::Vertex(Vector v,int _id) {
        position =v;
        id=_id;
        vertices.Add(this);
}

Vertex::~Vertex(){
        assert(face.num==0);
        while(neighbor.num) {
                neighbor[0]->neighbor.Remove(this);
                neighbor.Remove(neighbor[0]);
        }
        vertices.Remove(this);
}
void Vertex::RemoveIfNonNeighbor(Vertex *n) {
        // removes n from neighbor list if n isn't a neighbor.
        if(!neighbor.Contains(n)) return;
        for(int i=0;i<face.num;i++) {
                if(face[i]->HasVertex(n)) return;
        }
        neighbor.Remove(n);
}


float ComputeEdgeCollapseCost(Vertex *u,Vertex *v) {
        // if we collapse edge uv by moving u to v then how
        // much different will the model change, i.e. how much "error".
        // Texture, vertex normal, and border vertex code was removed
        // to keep this demo as simple as possible.
        // The method of determining cost was designed in order
        // to exploit small and coplanar regions for
        // effective polygon reduction.
        // Is is possible to add some checks here to see if "folds"
        // would be generated.  i.e. normal of a remaining face gets
        // flipped.  I never seemed to run into this problem and
        // therefore never added code to detect this case.
        int i;
        float edgelength = magnitude(v->position - u->position);
        float curvature=0;

        // find the "sides" triangles that are on the edge uv
        List<Triangle *> sides;
        for(i=0;i<u->face.num;i++) {
                if(u->face[i]->HasVertex(v)){
                        sides.Add(u->face[i]);
                }
        }
        // use the triangle facing most away from the sides
        // to determine our curvature term
        for(i=0;i<u->face.num;i++) {
                float mincurv=1; // curve for face i and closer side to it
                for(int j=0;j<sides.num;j++) {
                        // use dot product of face normals. '^'
                        // defined in vector
                        float dotprod = u->face[i]->normal ^ sides[j]->normal;
                        mincurv = min(mincurv,(1-dotprod)/2.0f);
                }
                curvature = max(curvature,mincurv);
        }
        // the more coplanar the lower the curvature term
        return edgelength * curvature;
}

void ComputeEdgeCostAtVertex(Vertex *v) {
        // compute the edge collapse cost for all edges that start
        // from vertex v.  Since we are only interested in reducing
        // the object by selecting the min cost edge at each step, we
        // only cache the cost of the least cost edge at this vertex
        // (in member variable collapse) as well as the value of the
        // cost (in member variable objdist).
        if(v->neighbor.num==0) {
                // v doesn't have neighbors so it costs nothing to collapse
                v->collapse=NULL;
                v->objdist=-0.01f;
                return;
        }
        v->objdist = 1000000;
        v->collapse=NULL;
        // search all neighboring edges for "least cost" edge
        for(int i=0;i<v->neighbor.num;i++) {
                float dist;
                dist = ComputeEdgeCollapseCost(v,v->neighbor[i]);
                if(dist<v->objdist) {
                        // candidate for edge collapse
                        v->collapse=v->neighbor[i];
                        // cost of the collapse
                        v->objdist=dist;
                }
        }
}
void ComputeAllEdgeCollapseCosts() {
        // For all the edges, compute the difference it would make
        // to the model if it was collapsed.  The least of these
        // per vertex is cached in each vertex object.
        for(int i=0;i<vertices.num;i++) {
                ComputeEdgeCostAtVertex(vertices[i]);
        }
}

void Collapse(Vertex *u,Vertex *v){
        // Collapse the edge uv by moving vertex u onto v
        // Actually remove tris on uv, then update tris that
        // have u to have v, and then remove u.
        if(!v) {
                // u is a vertex all by itself so just delete it
                delete u;
                return;
        }
        int i;
        List<Vertex *>tmp;
        // make tmp a list of all the neighbors of u
        for(i=0;i<u->neighbor.num;i++) {
                tmp.Add(u->neighbor[i]);
        }
        // delete triangles on edge uv:
        for(i=u->face.num-1;i>=0;i--) {
                if(u->face[i]->HasVertex(v)) {
                        delete(u->face[i]);
                }
        }
        // update remaining triangles to have v instead of u
        for(i=u->face.num-1;i>=0;i--) {
                u->face[i]->ReplaceVertex(u,v);
        }
        delete u;
        // recompute the edge collapse costs for neighboring vertices
        for(i=0;i<tmp.num;i++) {
                ComputeEdgeCostAtVertex(tmp[i]);
        }
}

void AddVertex(List<Vector> &vert){
        for(int i=0;i<vert.num;i++) {
                new Vertex(vert[i],i);
        }
}
void AddFaces(List<tridata> &tri){
        for(int i=0;i<tri.num;i++) {
                new Triangle(
            vertices[tri[i].v[0]],
            vertices[tri[i].v[1]],
            vertices[tri[i].v[2]] );
        }
}

Vertex *MinimumCostEdge(){
        // Find the edge that when collapsed will affect model the least.
        // This funtion actually returns a Vertex, the second vertex
        // of the edge (collapse candidate) is stored in the vertex data.
        // Serious optimization opportunity here: this function currently
        // does a sequential search through an unsorted list :-(
        // Our algorithm could be O(n*lg(n)) instead of O(n*n)
        Vertex *mn=vertices[0];
        for(int i=0;i<vertices.num;i++) {
                if(vertices[i]->objdist < mn->objdist) {
                        mn = vertices[i];
                }
        }
        return mn;
}

void ProgressiveMesh(List<Vector> &vert, List<tridata> &tri,
                     List<int> &map, List<int> &permutation)
{
        AddVertex(vert);  // put input data into our data structures
        AddFaces(tri);
        ComputeAllEdgeCollapseCosts(); // cache all edge collapse costs
        permutation.SetSize(vertices.num);  // allocate space
        map.SetSize(vertices.num);          // allocate space
        // reduce the object down to nothing:
        while(vertices.num > 0) {
                // get the next vertex to collapse
                Vertex *mn = MinimumCostEdge();
                // keep track of this vertex, i.e. the collapse ordering
                permutation[mn->id]=vertices.num-1;
                // keep track of vertex to which we collapse to
                map[vertices.num-1] = (mn->collapse)?mn->collapse->id:-1;
                // Collapse this edge
                Collapse(mn,mn->collapse);
        }
        // reorder the map list based on the collapse ordering
        for(int i=0;i<map.num;i++) {
                map[i] = (map[i]==-1)?0:permutation[map[i]];
        }
        // The caller of this function should reorder their vertices
        // according to the returned "permutation".
}