1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
/*
* Progressive Mesh type Polygon Reduction Algorithm
* by Stan Melax (c) 1998
* Permission to use any of this code wherever you want is granted..
* Although, please do acknowledge authorship if appropriate.
*
* See the header file progmesh.h for a description of this module
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
//#include <windows.h>
#include "vector.h"
#include "list.h"
#include "progmesh.h"
#define min(x,y) (((x) <= (y)) ? (x) : (y))
#define max(x,y) (((x) >= (y)) ? (x) : (y))
/*
* For the polygon reduction algorithm we use data structures
* that contain a little bit more information than the usual
* indexed face set type of data structure.
* From a vertex we wish to be able to quickly get the
* neighboring faces and vertices.
*/
class Triangle;
class Vertex;
class Triangle {
public:
Vertex * vertex[3]; // the 3 points that make this tri
Vector normal; // unit vector othogonal to this face
Triangle(Vertex *v0,Vertex *v1,Vertex *v2);
~Triangle();
void ComputeNormal();
void ReplaceVertex(Vertex *vold,Vertex *vnew);
int HasVertex(Vertex *v);
};
class Vertex {
public:
Vector position; // location of point in euclidean space
int id; // place of vertex in original list
List<Vertex *> neighbor; // adjacent vertices
List<Triangle *> face; // adjacent triangles
float objdist; // cached cost of collapsing edge
Vertex * collapse; // candidate vertex for collapse
Vertex(Vector v,int _id);
~Vertex();
void RemoveIfNonNeighbor(Vertex *n);
};
List<Vertex *> vertices;
List<Triangle *> triangles;
Triangle::Triangle(Vertex *v0,Vertex *v1,Vertex *v2){
assert(v0!=v1 && v1!=v2 && v2!=v0);
vertex[0]=v0;
vertex[1]=v1;
vertex[2]=v2;
ComputeNormal();
triangles.Add(this);
for(int i=0;i<3;i++) {
vertex[i]->face.Add(this);
for(int j=0;j<3;j++) if(i!=j) {
vertex[i]->neighbor.AddUnique(vertex[j]);
}
}
}
Triangle::~Triangle(){
int i;
triangles.Remove(this);
for(i=0;i<3;i++) {
if(vertex[i]) vertex[i]->face.Remove(this);
}
for(i=0;i<3;i++) {
int i2 = (i+1)%3;
if(!vertex[i] || !vertex[i2]) continue;
vertex[i ]->RemoveIfNonNeighbor(vertex[i2]);
vertex[i2]->RemoveIfNonNeighbor(vertex[i ]);
}
}
int Triangle::HasVertex(Vertex *v) {
return (v==vertex[0] ||v==vertex[1] || v==vertex[2]);
}
void Triangle::ComputeNormal(){
Vector v0=vertex[0]->position;
Vector v1=vertex[1]->position;
Vector v2=vertex[2]->position;
normal = (v1-v0)*(v2-v1);
if(magnitude(normal)==0)return;
normal = normalize(normal);
}
void Triangle::ReplaceVertex(Vertex *vold,Vertex *vnew) {
assert(vold && vnew);
assert(vold==vertex[0] || vold==vertex[1] || vold==vertex[2]);
assert(vnew!=vertex[0] && vnew!=vertex[1] && vnew!=vertex[2]);
if(vold==vertex[0]){
vertex[0]=vnew;
}
else if(vold==vertex[1]){
vertex[1]=vnew;
}
else {
assert(vold==vertex[2]);
vertex[2]=vnew;
}
int i;
vold->face.Remove(this);
assert(!vnew->face.Contains(this));
vnew->face.Add(this);
for(i=0;i<3;i++) {
vold->RemoveIfNonNeighbor(vertex[i]);
vertex[i]->RemoveIfNonNeighbor(vold);
}
for(i=0;i<3;i++) {
assert(vertex[i]->face.Contains(this)==1);
for(int j=0;j<3;j++) if(i!=j) {
vertex[i]->neighbor.AddUnique(vertex[j]);
}
}
ComputeNormal();
}
Vertex::Vertex(Vector v,int _id) {
position =v;
id=_id;
vertices.Add(this);
}
Vertex::~Vertex(){
assert(face.num==0);
while(neighbor.num) {
neighbor[0]->neighbor.Remove(this);
neighbor.Remove(neighbor[0]);
}
vertices.Remove(this);
}
void Vertex::RemoveIfNonNeighbor(Vertex *n) {
// removes n from neighbor list if n isn't a neighbor.
if(!neighbor.Contains(n)) return;
for(int i=0;i<face.num;i++) {
if(face[i]->HasVertex(n)) return;
}
neighbor.Remove(n);
}
float ComputeEdgeCollapseCost(Vertex *u,Vertex *v) {
// if we collapse edge uv by moving u to v then how
// much different will the model change, i.e. how much "error".
// Texture, vertex normal, and border vertex code was removed
// to keep this demo as simple as possible.
// The method of determining cost was designed in order
// to exploit small and coplanar regions for
// effective polygon reduction.
// Is is possible to add some checks here to see if "folds"
// would be generated. i.e. normal of a remaining face gets
// flipped. I never seemed to run into this problem and
// therefore never added code to detect this case.
int i;
float edgelength = magnitude(v->position - u->position);
float curvature=0;
// find the "sides" triangles that are on the edge uv
List<Triangle *> sides;
for(i=0;i<u->face.num;i++) {
if(u->face[i]->HasVertex(v)){
sides.Add(u->face[i]);
}
}
// use the triangle facing most away from the sides
// to determine our curvature term
for(i=0;i<u->face.num;i++) {
float mincurv=1; // curve for face i and closer side to it
for(int j=0;j<sides.num;j++) {
// use dot product of face normals. '^'
// defined in vector
float dotprod = u->face[i]->normal ^ sides[j]->normal;
mincurv = min(mincurv,(1-dotprod)/2.0f);
}
curvature = max(curvature,mincurv);
}
// the more coplanar the lower the curvature term
return edgelength * curvature;
}
void ComputeEdgeCostAtVertex(Vertex *v) {
// compute the edge collapse cost for all edges that start
// from vertex v. Since we are only interested in reducing
// the object by selecting the min cost edge at each step, we
// only cache the cost of the least cost edge at this vertex
// (in member variable collapse) as well as the value of the
// cost (in member variable objdist).
if(v->neighbor.num==0) {
// v doesn't have neighbors so it costs nothing to collapse
v->collapse=NULL;
v->objdist=-0.01f;
return;
}
v->objdist = 1000000;
v->collapse=NULL;
// search all neighboring edges for "least cost" edge
for(int i=0;i<v->neighbor.num;i++) {
float dist;
dist = ComputeEdgeCollapseCost(v,v->neighbor[i]);
if(dist<v->objdist) {
// candidate for edge collapse
v->collapse=v->neighbor[i];
// cost of the collapse
v->objdist=dist;
}
}
}
void ComputeAllEdgeCollapseCosts() {
// For all the edges, compute the difference it would make
// to the model if it was collapsed. The least of these
// per vertex is cached in each vertex object.
for(int i=0;i<vertices.num;i++) {
ComputeEdgeCostAtVertex(vertices[i]);
}
}
void Collapse(Vertex *u,Vertex *v){
// Collapse the edge uv by moving vertex u onto v
// Actually remove tris on uv, then update tris that
// have u to have v, and then remove u.
if(!v) {
// u is a vertex all by itself so just delete it
delete u;
return;
}
int i;
List<Vertex *>tmp;
// make tmp a list of all the neighbors of u
for(i=0;i<u->neighbor.num;i++) {
tmp.Add(u->neighbor[i]);
}
// delete triangles on edge uv:
for(i=u->face.num-1;i>=0;i--) {
if(u->face[i]->HasVertex(v)) {
delete(u->face[i]);
}
}
// update remaining triangles to have v instead of u
for(i=u->face.num-1;i>=0;i--) {
u->face[i]->ReplaceVertex(u,v);
}
delete u;
// recompute the edge collapse costs for neighboring vertices
for(i=0;i<tmp.num;i++) {
ComputeEdgeCostAtVertex(tmp[i]);
}
}
void AddVertex(List<Vector> &vert){
for(int i=0;i<vert.num;i++) {
new Vertex(vert[i],i);
}
}
void AddFaces(List<tridata> &tri){
for(int i=0;i<tri.num;i++) {
new Triangle(
vertices[tri[i].v[0]],
vertices[tri[i].v[1]],
vertices[tri[i].v[2]] );
}
}
Vertex *MinimumCostEdge(){
// Find the edge that when collapsed will affect model the least.
// This funtion actually returns a Vertex, the second vertex
// of the edge (collapse candidate) is stored in the vertex data.
// Serious optimization opportunity here: this function currently
// does a sequential search through an unsorted list :-(
// Our algorithm could be O(n*lg(n)) instead of O(n*n)
Vertex *mn=vertices[0];
for(int i=0;i<vertices.num;i++) {
if(vertices[i]->objdist < mn->objdist) {
mn = vertices[i];
}
}
return mn;
}
void ProgressiveMesh(List<Vector> &vert, List<tridata> &tri,
List<int> &map, List<int> &permutation)
{
AddVertex(vert); // put input data into our data structures
AddFaces(tri);
ComputeAllEdgeCollapseCosts(); // cache all edge collapse costs
permutation.SetSize(vertices.num); // allocate space
map.SetSize(vertices.num); // allocate space
// reduce the object down to nothing:
while(vertices.num > 0) {
// get the next vertex to collapse
Vertex *mn = MinimumCostEdge();
// keep track of this vertex, i.e. the collapse ordering
permutation[mn->id]=vertices.num-1;
// keep track of vertex to which we collapse to
map[vertices.num-1] = (mn->collapse)?mn->collapse->id:-1;
// Collapse this edge
Collapse(mn,mn->collapse);
}
// reorder the map list based on the collapse ordering
for(int i=0;i<map.num;i++) {
map[i] = (map[i]==-1)?0:permutation[map[i]];
}
// The caller of this function should reorder their vertices
// according to the returned "permutation".
}
|