File: adiabaticFlameT.C

package info (click to toggle)
openfoam 4.1%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 163,028 kB
  • ctags: 58,990
  • sloc: cpp: 830,760; sh: 10,227; ansic: 8,215; xml: 745; lex: 437; awk: 194; sed: 91; makefile: 77; python: 18
file content (195 lines) | stat: -rw-r--r-- 5,664 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*---------------------------------------------------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     |
    \\  /    A nd           | Copyright (C) 2011-2016 OpenFOAM Foundation
     \\/     M anipulation  |
-------------------------------------------------------------------------------
License
    This file is part of OpenFOAM.

    OpenFOAM is free software: you can redistribute it and/or modify it
    under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.

    You should have received a copy of the GNU General Public License
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.

Application
    adiabaticFlameT

Description
    Calculates the adiabatic flame temperature for a given fuel over a
    range of unburnt temperatures and equivalence ratios.

\*---------------------------------------------------------------------------*/

#include "argList.H"
#include "Time.H"
#include "dictionary.H"
#include "IFstream.H"
#include "OSspecific.H"
#include "etcFiles.H"

#include "specie.H"
#include "perfectGas.H"
#include "thermo.H"
#include "janafThermo.H"
#include "absoluteEnthalpy.H"

using namespace Foam;

typedef species::thermo<janafThermo<perfectGas<specie>>, absoluteEnthalpy>
    thermo;

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])
{
    argList::validArgs.append("controlFile");
    argList args(argc, argv);

    const fileName controlFileName = args[1];

    // Construct control dictionary
    IFstream controlFile(controlFileName);

    // Check controlFile stream is OK
    if (!controlFile.good())
    {
        FatalErrorInFunction
            << "Cannot read file " << controlFileName
            << exit(FatalError);
    }

    dictionary control(controlFile);


    scalar P(readScalar(control.lookup("P")));
    scalar T0(readScalar(control.lookup("T0")));
    const word fuelName(control.lookup("fuel"));
    scalar n(readScalar(control.lookup("n")));
    scalar m(readScalar(control.lookup("m")));


    Info<< nl << "Reading thermodynamic data dictionary" << endl;

    fileName thermoDataFileName(findEtcFile("thermoData/thermoData"));

    // Construct control dictionary
    IFstream thermoDataFile(thermoDataFileName);

    // Check thermoData stream is OK
    if (!thermoDataFile.good())
    {
        FatalErrorInFunction
            << "Cannot read file " << thermoDataFileName
            << exit(FatalError);
    }

    dictionary thermoData(thermoDataFile);


    scalar stoicO2 = n + m/4.0;
    scalar stoicN2 = (0.79/0.21)*(n + m/4.0);
    scalar stoicCO2 = n;
    scalar stoicH2O = m/2.0;

    thermo fuel
    (
        "fuel",
        thermo(thermoData.subDict(fuelName))
    );

    thermo oxidant
    (
        "oxidant",
        stoicO2*thermo(thermoData.subDict("O2"))
      + stoicN2*thermo(thermoData.subDict("N2"))
    );

    dimensionedScalar stoichiometricAirFuelMassRatio
    (
        "stoichiometricAirFuelMassRatio",
        dimless,
        (oxidant.W()*oxidant.nMoles())/fuel.W()
    );

    Info<< "stoichiometricAirFuelMassRatio "
        << stoichiometricAirFuelMassRatio << ';' << endl;

    for (int i=0; i<300; i++)
    {
        scalar equiv = (i + 1)*0.01;
        scalar ft = 1/(1 + stoichiometricAirFuelMassRatio.value()/equiv);

        Info<< "phi = " << equiv << nl
            << "ft = " << ft << endl;

        scalar o2 = (1.0/equiv)*stoicO2;
        scalar n2 = (0.79/0.21)*o2;
        scalar fres = max(1.0 - 1.0/equiv, 0.0);
        scalar ores = max(1.0/equiv - 1.0, 0.0);
        scalar fburnt = 1.0 - fres;

        thermo fuel
        (
            "fuel",
            thermo(thermoData.subDict(fuelName))
        );
        Info<< "fuel " << fuel << ';' << endl;

        thermo oxidant
        (
            "oxidant",
            o2*thermo(thermoData.subDict("O2"))
          + n2*thermo(thermoData.subDict("N2"))
        );
        Info<< "oxidant " << (1/oxidant.nMoles())*oxidant << ';' << endl;

        thermo reactants
        (
            "reactants",
            fuel + oxidant
        );
        Info<< "reactants " << (1/reactants.nMoles())*reactants << ';' << endl;

        thermo burntProducts
        (
            "burntProducts",
          + (n2 - (0.79/0.21)*ores*stoicO2)*thermo(thermoData.subDict("N2"))
          + fburnt*stoicCO2*thermo(thermoData.subDict("CO2"))
          + fburnt*stoicH2O*thermo(thermoData.subDict("H2O"))
        );
        Info<< "burntProducts "
            << (1/burntProducts.nMoles())*burntProducts << ';' << endl;

        thermo products
        (
            "products",
            fres*fuel
          + n2*thermo(thermoData.subDict("N2"))
          + fburnt*stoicCO2*thermo(thermoData.subDict("CO2"))
          + fburnt*stoicH2O*thermo(thermoData.subDict("H2O"))
          + ores*stoicO2*thermo(thermoData.subDict("O2"))
        );

        Info<< "products " << (1/products.nMoles())*products << ';' << endl;

        scalar Tad = products.THa(reactants.Ha(P, T0), P, 1000.0);
        Info<< "Tad = " << Tad << nl << endl;
    }

    Info<< nl << "end" << endl;

    return 0;
}


// ************************************************************************* //