1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 4.x |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "constant";
object radiationProperties;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
radiation on;
radiationModel fvDOM;
fvDOMCoeffs
{
nPhi 4; // azimuthal angles in PI/2 on X-Y.(from Y to X)
nTheta 0; // polar angles in PI (from Z to X-Y plane)
convergence 1e-2; // convergence criteria for radiation iteration
maxIter 4; // maximum number of iterations
cacheDiv true; // cache the div of the RTE equation.
// NOTE: Caching div is "only" accurate if the upwind scheme is used in
// div(Ji,Ii_h)
}
// Number of flow iterations per radiation iteration
solverFreq 10;
absorptionEmissionModel greyMeanAbsorptionEmission;
constantAbsorptionEmissionCoeffs
{
absorptivity absorptivity [ m^-1 ] 0.01;
emissivity emissivity [ m^-1 ] 0.01;
E E [ kg m^-1 s^-3 ] 0;
}
greyMeanAbsorptionEmissionCoeffs
{
lookUpTableFileName none;
EhrrCoeff 0.0;
CO2
{
Tcommon 200; //Common Temp
invTemp true; //Is the polynomio using inverse temperature.
Tlow 200; //Low Temp
Thigh 2500; //High Temp
loTcoeffs //coefss for T < Tcommon
(
0 // a0 +
0 // a1*T +
0 // a2*T^(+/-)2 +
0 // a3*T^(+/-)3 +
0 // a4*T^(+/-)4 +
0 // a5*T^(+/-)5 +
);
hiTcoeffs //coefss for T > Tcommon
(
18.741
-121.31e3
273.5e6
-194.05e9
56.31e12
-5.8169e15
);
}
H2O
{
Tcommon 200;
invTemp true;
Tlow 200;
Thigh 2500;
loTcoeffs
(
0
0
0
0
0
0
);
hiTcoeffs
(
-0.23093
-1.12390e3
9.4153e6
-2.99885e9
0.51382e12
-1.868e10
);
}
CH4
{
Tcommon 200;
Tlow 200;
Thigh 2500;
invTemp false;
loTcoeffs
(
0
0
0
0
0
0
);
hiTcoeffs
(
6.6334
-0.0035686
1.6682e-8
2.5611e-10
-2.6558e-14
0
);
}
O2
{
Tcommon 200;
invTemp true;
Tlow 200;
Thigh 2500;
loTcoeffs
(
0
0
0
0
0
0
);
hiTcoeffs
(
0.1
0
0
0
0
0
);
}
N2
{
Tcommon 200;
invTemp true;
Tlow 200;
Thigh 2500;
loTcoeffs
(
0
0
0
0
0
0
);
hiTcoeffs
(
0.1
0
0
0
0
0
);
}
}
scatterModel none;
sootModel mixtureFractionSoot<gasHThermoPhysics>;
mixtureFractionSootCoeffs
{
//CH4 + 2O2 + 7.5N2 = CO2 + 2H2O + 7.5N2 + nuSoot soot
nuSoot 0.055;
Wsoot 12;
}
// ************************************************************************* //
|