1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
%% Reset everything
clear all;
clc;
close all;
addpath('helpers');
%% Configure the benchmark
% central case -> only one camera
cam_number = 4;
% Getting 17 points, and testing all algorithms with the respective number of points
pt_number = 17;
% noise test, so no outliers
outlier_fraction = 0.0;
% repeat 1000 iterations
iterations = 1000;
% The algorithms we want to test
algorithms = { 'sixpt'; 'ge'; 'seventeenpt' };
% This defines the number of points used for every algorithm
indices = { [1:1:6]; [1:1:8]; [1:1:17] };
% The name of the algorithms in the final plots
names = { '6pt';'ge (8pt)'; '17pt' };
% The noise in this experiment
noise = 0.5;
%% Run the benchmark
%prepare the overall result arrays
num_algorithms = size(algorithms,1);
execution_times = zeros(num_algorithms,iterations);
counter = 0;
for i=1:iterations
% generate experiment
[v1,v2,t,R] = create2D2DOmniExperiment(pt_number,cam_number,noise,outlier_fraction);
[t_perturbed,R_perturbed] = perturb(t,R,0.01);
T_perturbed = [R_perturbed,t_perturbed];
T_init = [eye(3) zeros(3,1)];
for a=1:num_algorithms
tic
Out = opengv_donotuse(algorithms{a},indices{a},v1,v2,T_init);
execution_times(a,i) = toc/20.0;
end
counter = counter + 1;
if counter == 1
counter = 0;
display(['Iteration ' num2str(i) ' of ' num2str(iterations) '(noise level ' num2str(noise) ')']);
end
end
%% Plot results
hist(log10(execution_times)')
legend(names,'Location','NorthWest')
xlabel('execution time [s]')
ylabel('occurence')
grid on
%% print the mean and median execution time on the console
display( 'mean execution times:' )
display(['sixpt: ' num2str(mean(execution_times(1,:)'))] );
display(['ge: ' num2str(mean(execution_times(2,:)'))] );
display(['seventeenpt: ' num2str(mean(execution_times(3,:)'))] );
%% Plot the results
%
% [y1,x1] = hist(execution_times(1,:));
% [y2,x2] = hist(execution_times(2,:));
% [y3,x3] = hist(execution_times(3,:));
%
% y1 = y1 / (x1(1,2) - x1(1,1));
% y2 = y2 / (x2(1,2) - x2(1,1));
% y3 = y3 / (x3(1,2) - x3(1,1));
%
% figure(2)
% hold on
% plot(x1,y1,'b');
% plot(x2,y2,'g');
% plot(x3,y3,'r');
% legend(names,'Location','NorthWest')
% xlabel('execution time [s]')
% ylabel('probability')
% grid on
|