File: test_relative_pose.cpp

package info (click to toggle)
opengv 1.0%2B1git91f4b1-8
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 5,484 kB
  • sloc: cpp: 45,813; python: 152; makefile: 17; xml: 13; sh: 4
file content (234 lines) | stat: -rw-r--r-- 10,512 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/******************************************************************************
 * Author:   Laurent Kneip                                                    *
 * Contact:  kneip.laurent@gmail.com                                          *
 * License:  Copyright (c) 2013 Laurent Kneip, ANU. All rights reserved.      *
 *                                                                            *
 * Redistribution and use in source and binary forms, with or without         *
 * modification, are permitted provided that the following conditions         *
 * are met:                                                                   *
 * * Redistributions of source code must retain the above copyright           *
 *   notice, this list of conditions and the following disclaimer.            *
 * * Redistributions in binary form must reproduce the above copyright        *
 *   notice, this list of conditions and the following disclaimer in the      *
 *   documentation and/or other materials provided with the distribution.     *
 * * Neither the name of ANU nor the names of its contributors may be         *
 *   used to endorse or promote products derived from this software without   *
 *   specific prior written permission.                                       *
 *                                                                            *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"*
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE  *
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE *
 * ARE DISCLAIMED. IN NO EVENT SHALL ANU OR THE CONTRIBUTORS BE LIABLE        *
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL *
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR *
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER *
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT         *
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY  *
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF     *
 * SUCH DAMAGE.                                                               *
 ******************************************************************************/

#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <iomanip>
#include <opengv/relative_pose/methods.hpp>
#include <opengv/relative_pose/CentralRelativeAdapter.hpp>
#include <sstream>
#include <fstream>

#include "random_generators.hpp"
#include "experiment_helpers.hpp"
#include "time_measurement.hpp"


using namespace std;
using namespace Eigen;
using namespace opengv;

int main( int argc, char** argv )
{
  // initialize random seed
  initializeRandomSeed();

  //set experiment parameters
  double noise = 0.0;
  double outlierFraction = 0.0;
  size_t numberPoints = 10;

  //generate a random pose for viewpoint 1
  translation_t position1 = Eigen::Vector3d::Zero();
  rotation_t rotation1 = Eigen::Matrix3d::Identity();

  //generate a random pose for viewpoint 2
  translation_t position2 = generateRandomTranslation(2.0);
  rotation_t rotation2 = generateRandomRotation(0.5);

  //create a fake central camera
  translations_t camOffsets;
  rotations_t camRotations;
  generateCentralCameraSystem( camOffsets, camRotations );

  //derive correspondences based on random point-cloud
  bearingVectors_t bearingVectors1;
  bearingVectors_t bearingVectors2;
  std::vector<int> camCorrespondences1; //unused in the central case
  std::vector<int> camCorrespondences2; //unused in the central case
  Eigen::MatrixXd gt(3,numberPoints);
  generateRandom2D2DCorrespondences(
      position1, rotation1, position2, rotation2,
      camOffsets, camRotations, numberPoints, noise, outlierFraction,
      bearingVectors1, bearingVectors2,
      camCorrespondences1, camCorrespondences2, gt );

  //Extract the relative pose
  translation_t position; rotation_t rotation;
  extractRelativePose(
      position1, position2, rotation1, rotation2, position, rotation );

  //print experiment characteristics
  printExperimentCharacteristics( position, rotation, noise, outlierFraction );
  
  //compute and print the essential-matrix
  printEssentialMatrix( position, rotation );

  //create a central relative adapter
  relative_pose::CentralRelativeAdapter adapter(
      bearingVectors1,
      bearingVectors2,
      rotation);

  //timer
  struct timeval tic;
  struct timeval toc;
  size_t iterations = 50;

  //running experiments
  std::cout << "running twopt" << std::endl;
  translation_t twopt_translation;
  gettimeofday( &tic, 0 );
  for(size_t i = 0; i < iterations; i++)
    twopt_translation = relative_pose::twopt(adapter,true);
  gettimeofday( &toc, 0 );
  double twopt_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;

  std::cout << "running fivept_stewenius" << std::endl;
  complexEssentials_t fivept_stewenius_essentials;
  gettimeofday( &tic, 0 );
  for(size_t i = 0; i < iterations; i++)
    fivept_stewenius_essentials = relative_pose::fivept_stewenius(adapter);
  gettimeofday( &toc, 0 );
  double fivept_stewenius_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;

  std::cout << "running fivept_nister" << std::endl;
  essentials_t fivept_nister_essentials;
  gettimeofday( &tic, 0 );
  for(size_t i = 0; i < iterations; i++)
    fivept_nister_essentials = relative_pose::fivept_nister(adapter);
  gettimeofday( &toc, 0 );
  double fivept_nister_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;

  std::cout << "running fivept_kneip" << std::endl;
  rotations_t fivept_kneip_rotations;
  gettimeofday( &tic, 0 );
  std::vector<int> indices5 = getNindices(5);
  for(size_t i = 0; i < iterations; i++)
    fivept_kneip_rotations = relative_pose::fivept_kneip(adapter,indices5);
  gettimeofday( &toc, 0 );
  double fivept_kneip_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;

  std::cout << "running sevenpt" << std::endl;
  essentials_t sevenpt_essentials;
  gettimeofday( &tic, 0 );
  for(size_t i = 0; i < iterations; i++)
    sevenpt_essentials = relative_pose::sevenpt(adapter);
  gettimeofday( &toc, 0 );
  double sevenpt_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;

  std::cout << "running eightpt" << std::endl;
  essential_t eightpt_essential;
  gettimeofday( &tic, 0 );
  for(size_t i = 0; i < iterations; i++)
    eightpt_essential = relative_pose::eightpt(adapter);
  gettimeofday( &toc, 0 );
  double eightpt_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;

  std::cout << "setting perturbed rotation and ";
  std::cout << "running eigensolver" << std::endl;
  translation_t t_perturbed; rotation_t R_perturbed;
  getPerturbedPose( position, rotation, t_perturbed, R_perturbed, 0.01);
  rotation_t eigensolver_rotation;
  gettimeofday( &tic, 0 );
  for(size_t i = 0; i < iterations; i++)
  {
    adapter.setR12(R_perturbed);
    eigensolver_rotation = relative_pose::eigensolver(adapter);
  }
  gettimeofday( &toc, 0 );
  double eigensolver_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;

  std::cout << "setting perturbed pose and ";
  std::cout << "performing nonlinear optimization" << std::endl;
  getPerturbedPose( position, rotation, t_perturbed, R_perturbed, 0.1);
  transformation_t nonlinear_transformation;
  gettimeofday( &tic, 0 );
  for(size_t i = 0; i < iterations; i++)
  {
    adapter.sett12(t_perturbed);
    adapter.setR12(R_perturbed);
    nonlinear_transformation = relative_pose::optimize_nonlinear(adapter);
  }
  gettimeofday( &toc, 0 );
  double nonlinear_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;

  std::cout << "setting perturbed pose and ";
  std::cout << "performing nonlinear optimization with 10 indices" << std::endl;
  std::vector<int> indices10 = getNindices(10);
  getPerturbedPose( position, rotation, t_perturbed, R_perturbed, 0.1);
  adapter.sett12(t_perturbed);
  adapter.setR12(R_perturbed);
  transformation_t nonlinear_transformation_10 =
      relative_pose::optimize_nonlinear(adapter,indices10);

  //print results
  std::cout << "results from two-points algorithm:" << std::endl;
  std::cout << twopt_translation << std::endl << std::endl;
  std::cout << "results from stewenius' five-point algorithm:" << std::endl;
  for( size_t i = 0; i < fivept_stewenius_essentials.size(); i++ )
    std::cout << fivept_stewenius_essentials.at(i) << std::endl << std::endl;
  std::cout << "results from nisters' five-point algorithm:" << std::endl;
  for( size_t i = 0; i < fivept_nister_essentials.size(); i++ )
    std::cout << fivept_nister_essentials.at(i) << std::endl << std::endl;
  std::cout << "results from kneip's five-point algorithm:" << std::endl;
  for( size_t i = 0; i < fivept_kneip_rotations.size(); i++ )
    std::cout << fivept_kneip_rotations.at(i) << std::endl << std::endl;
  std::cout << "results from seven-point algorithm:" << std::endl;
  for( size_t i = 0; i < sevenpt_essentials.size(); i++ )
    std::cout << sevenpt_essentials.at(i) << std::endl << std::endl;
  std::cout << "results from eight-point algorithm:" << std::endl;
  std::cout << eightpt_essential << std::endl << std::endl;
  std::cout << "results from eigensystem based rotation solver:" << std::endl;
  std::cout << eigensolver_rotation << std::endl << std::endl << std::endl;
  std::cout << "results from nonlinear algorithm:" << std::endl;
  std::cout << nonlinear_transformation << std::endl << std::endl;
  std::cout << "results from nonlinear algorithm with only few correspondences:";
  std::cout << std::endl;
  std::cout << nonlinear_transformation_10 << std::endl << std::endl;

  std::cout << "timings from two-points algorithm: ";
  std::cout << twopt_time << std::endl;
  std::cout << "timings from stewenius' five-point algorithm: ";
  std::cout << fivept_stewenius_time << std::endl;
  std::cout << "timings from nisters' five-point algorithm: ";
  std::cout << fivept_nister_time << std::endl;
  std::cout << "timings from kneip's five-point algorithm: ";
  std::cout << fivept_kneip_time << std::endl;
  std::cout << "timings from seven-point algorithm: ";
  std::cout << sevenpt_time << std::endl;
  std::cout << "timings from eight-point algorithm: ";
  std::cout << eightpt_time << std::endl;
  std::cout << "timings from eigensystem based rotation solver: ";
  std::cout << eigensolver_time << std::endl;
  std::cout << "timings from nonlinear algorithm: ";
  std::cout << nonlinear_time << std::endl;
}