1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
/******************************************************************************
* Author: Laurent Kneip *
* Contact: kneip.laurent@gmail.com *
* License: Copyright (c) 2013 Laurent Kneip, ANU. All rights reserved. *
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions *
* are met: *
* * Redistributions of source code must retain the above copyright *
* notice, this list of conditions and the following disclaimer. *
* * Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* * Neither the name of ANU nor the names of its contributors may be *
* used to endorse or promote products derived from this software without *
* specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"*
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE *
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE *
* ARE DISCLAIMED. IN NO EVENT SHALL ANU OR THE CONTRIBUTORS BE LIABLE *
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL *
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR *
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER *
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT *
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY *
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *
* SUCH DAMAGE. *
******************************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <iomanip>
#include <opengv/relative_pose/methods.hpp>
#include <opengv/relative_pose/CentralRelativeAdapter.hpp>
#include <sstream>
#include <fstream>
#include "random_generators.hpp"
#include "experiment_helpers.hpp"
#include "time_measurement.hpp"
using namespace std;
using namespace Eigen;
using namespace opengv;
int main( int argc, char** argv )
{
// initialize random seed
initializeRandomSeed();
//set experiment parameters
double noise = 0.0;
double outlierFraction = 0.0;
size_t numberPoints = 10;
//generate a random pose for viewpoint 1
translation_t position1 = Eigen::Vector3d::Zero();
rotation_t rotation1 = Eigen::Matrix3d::Identity();
//generate a random pose for viewpoint 2
translation_t position2 = generateRandomTranslation(2.0);
rotation_t rotation2 = generateRandomRotation(0.5);
//create a fake central camera
translations_t camOffsets;
rotations_t camRotations;
generateCentralCameraSystem( camOffsets, camRotations );
//derive correspondences based on random point-cloud
bearingVectors_t bearingVectors1;
bearingVectors_t bearingVectors2;
std::vector<int> camCorrespondences1; //unused in the central case
std::vector<int> camCorrespondences2; //unused in the central case
Eigen::MatrixXd gt(3,numberPoints);
generateRandom2D2DCorrespondences(
position1, rotation1, position2, rotation2,
camOffsets, camRotations, numberPoints, noise, outlierFraction,
bearingVectors1, bearingVectors2,
camCorrespondences1, camCorrespondences2, gt );
//Extract the relative pose
translation_t position; rotation_t rotation;
extractRelativePose(
position1, position2, rotation1, rotation2, position, rotation );
//print experiment characteristics
printExperimentCharacteristics( position, rotation, noise, outlierFraction );
//compute and print the essential-matrix
printEssentialMatrix( position, rotation );
//create a central relative adapter
relative_pose::CentralRelativeAdapter adapter(
bearingVectors1,
bearingVectors2,
rotation);
//timer
struct timeval tic;
struct timeval toc;
size_t iterations = 50;
//running experiments
std::cout << "running twopt" << std::endl;
translation_t twopt_translation;
gettimeofday( &tic, 0 );
for(size_t i = 0; i < iterations; i++)
twopt_translation = relative_pose::twopt(adapter,true);
gettimeofday( &toc, 0 );
double twopt_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;
std::cout << "running fivept_stewenius" << std::endl;
complexEssentials_t fivept_stewenius_essentials;
gettimeofday( &tic, 0 );
for(size_t i = 0; i < iterations; i++)
fivept_stewenius_essentials = relative_pose::fivept_stewenius(adapter);
gettimeofday( &toc, 0 );
double fivept_stewenius_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;
std::cout << "running fivept_nister" << std::endl;
essentials_t fivept_nister_essentials;
gettimeofday( &tic, 0 );
for(size_t i = 0; i < iterations; i++)
fivept_nister_essentials = relative_pose::fivept_nister(adapter);
gettimeofday( &toc, 0 );
double fivept_nister_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;
std::cout << "running fivept_kneip" << std::endl;
rotations_t fivept_kneip_rotations;
gettimeofday( &tic, 0 );
std::vector<int> indices5 = getNindices(5);
for(size_t i = 0; i < iterations; i++)
fivept_kneip_rotations = relative_pose::fivept_kneip(adapter,indices5);
gettimeofday( &toc, 0 );
double fivept_kneip_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;
std::cout << "running sevenpt" << std::endl;
essentials_t sevenpt_essentials;
gettimeofday( &tic, 0 );
for(size_t i = 0; i < iterations; i++)
sevenpt_essentials = relative_pose::sevenpt(adapter);
gettimeofday( &toc, 0 );
double sevenpt_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;
std::cout << "running eightpt" << std::endl;
essential_t eightpt_essential;
gettimeofday( &tic, 0 );
for(size_t i = 0; i < iterations; i++)
eightpt_essential = relative_pose::eightpt(adapter);
gettimeofday( &toc, 0 );
double eightpt_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;
std::cout << "setting perturbed rotation and ";
std::cout << "running eigensolver" << std::endl;
translation_t t_perturbed; rotation_t R_perturbed;
getPerturbedPose( position, rotation, t_perturbed, R_perturbed, 0.01);
rotation_t eigensolver_rotation;
gettimeofday( &tic, 0 );
for(size_t i = 0; i < iterations; i++)
{
adapter.setR12(R_perturbed);
eigensolver_rotation = relative_pose::eigensolver(adapter);
}
gettimeofday( &toc, 0 );
double eigensolver_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;
std::cout << "setting perturbed pose and ";
std::cout << "performing nonlinear optimization" << std::endl;
getPerturbedPose( position, rotation, t_perturbed, R_perturbed, 0.1);
transformation_t nonlinear_transformation;
gettimeofday( &tic, 0 );
for(size_t i = 0; i < iterations; i++)
{
adapter.sett12(t_perturbed);
adapter.setR12(R_perturbed);
nonlinear_transformation = relative_pose::optimize_nonlinear(adapter);
}
gettimeofday( &toc, 0 );
double nonlinear_time = TIMETODOUBLE(timeval_minus(toc,tic)) / iterations;
std::cout << "setting perturbed pose and ";
std::cout << "performing nonlinear optimization with 10 indices" << std::endl;
std::vector<int> indices10 = getNindices(10);
getPerturbedPose( position, rotation, t_perturbed, R_perturbed, 0.1);
adapter.sett12(t_perturbed);
adapter.setR12(R_perturbed);
transformation_t nonlinear_transformation_10 =
relative_pose::optimize_nonlinear(adapter,indices10);
//print results
std::cout << "results from two-points algorithm:" << std::endl;
std::cout << twopt_translation << std::endl << std::endl;
std::cout << "results from stewenius' five-point algorithm:" << std::endl;
for( size_t i = 0; i < fivept_stewenius_essentials.size(); i++ )
std::cout << fivept_stewenius_essentials.at(i) << std::endl << std::endl;
std::cout << "results from nisters' five-point algorithm:" << std::endl;
for( size_t i = 0; i < fivept_nister_essentials.size(); i++ )
std::cout << fivept_nister_essentials.at(i) << std::endl << std::endl;
std::cout << "results from kneip's five-point algorithm:" << std::endl;
for( size_t i = 0; i < fivept_kneip_rotations.size(); i++ )
std::cout << fivept_kneip_rotations.at(i) << std::endl << std::endl;
std::cout << "results from seven-point algorithm:" << std::endl;
for( size_t i = 0; i < sevenpt_essentials.size(); i++ )
std::cout << sevenpt_essentials.at(i) << std::endl << std::endl;
std::cout << "results from eight-point algorithm:" << std::endl;
std::cout << eightpt_essential << std::endl << std::endl;
std::cout << "results from eigensystem based rotation solver:" << std::endl;
std::cout << eigensolver_rotation << std::endl << std::endl << std::endl;
std::cout << "results from nonlinear algorithm:" << std::endl;
std::cout << nonlinear_transformation << std::endl << std::endl;
std::cout << "results from nonlinear algorithm with only few correspondences:";
std::cout << std::endl;
std::cout << nonlinear_transformation_10 << std::endl << std::endl;
std::cout << "timings from two-points algorithm: ";
std::cout << twopt_time << std::endl;
std::cout << "timings from stewenius' five-point algorithm: ";
std::cout << fivept_stewenius_time << std::endl;
std::cout << "timings from nisters' five-point algorithm: ";
std::cout << fivept_nister_time << std::endl;
std::cout << "timings from kneip's five-point algorithm: ";
std::cout << fivept_kneip_time << std::endl;
std::cout << "timings from seven-point algorithm: ";
std::cout << sevenpt_time << std::endl;
std::cout << "timings from eight-point algorithm: ";
std::cout << eightpt_time << std::endl;
std::cout << "timings from eigensystem based rotation solver: ";
std::cout << eigensolver_time << std::endl;
std::cout << "timings from nonlinear algorithm: ";
std::cout << nonlinear_time << std::endl;
}
|