File: tests.py

package info (click to toggle)
opengv 1.0%2B1git91f4b1-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,508 kB
  • sloc: cpp: 45,813; python: 152; makefile: 17; xml: 13; sh: 4
file content (237 lines) | stat: -rw-r--r-- 8,057 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import pyopengv
import numpy as np


def normalized(x):
    return x / np.linalg.norm(x)


def generateRandomPoint(maximumDepth, minimumDepth):
    cleanPoint = np.random.uniform(-1.0, 1.0, 3)
    direction = normalized(cleanPoint)
    return (maximumDepth - minimumDepth) * cleanPoint + minimumDepth * direction


def generateRandomTranslation(maximumParallax):
    return np.random.uniform(-maximumParallax, maximumParallax, 3)


def generateRandomRotation(maxAngle):
    rpy = np.random.uniform(-maxAngle, maxAngle, 3)

    R1 = np.array([[1.0,  0.0,  0.0],
                   [0.0,  np.cos(rpy[0]), -np.sin(rpy[0])],
                   [0.0,  np.sin(rpy[0]),  np.cos(rpy[0])]])

    R2 = np.array([[np.cos(rpy[1]),  0.0,  np.sin(rpy[1])],
                   [0.0,  1.0,  0.0],
                   [-np.sin(rpy[1]),  0.0,  np.cos(rpy[1])]])

    R3 = np.array([[np.cos(rpy[2]), -np.sin(rpy[2]),  0.0],
                   [np.sin(rpy[2]),  np.cos(rpy[2]),  0.0],
                   [0.0,  0.0,  1.0]])

    return R3.dot(R2.dot(R1))


def addNoise(noiseLevel, cleanPoint):
    noisyPoint = cleanPoint + np.random.uniform(-noiseLevel, noiseLevel, 3)
    return normalized(noisyPoint)


def extractRelativePose(position1, position2, rotation1, rotation2):
    relativeRotation = rotation1.T.dot(rotation2)
    relativePosition = rotation1.T.dot(position2 - position1)
    return relativePosition, relativeRotation


def essentialMatrix(position, rotation):
    # E transforms vectors from vp 2 to 1: x_1^T * E * x_2 = 0
    # and E = (t)_skew*R
    t_skew = np.zeros((3, 3))
    t_skew[0, 1] = -position[2]
    t_skew[0, 2] = position[1]
    t_skew[1, 0] = position[2]
    t_skew[1, 2] = -position[0]
    t_skew[2, 0] = -position[1]
    t_skew[2, 1] = position[0]

    E = t_skew.dot(rotation)
    return normalized(E)


def getPerturbedPose(position, rotation, amplitude):
    dp = generateRandomTranslation(amplitude)
    dR = generateRandomRotation(amplitude)
    return position + dp, rotation.dot(dR)


def proportional(x, y, tol=1e-2):
    xn = normalized(x)
    yn = normalized(y)
    return (np.allclose(xn, yn, rtol=1e20, atol=tol) or
            np.allclose(xn, -yn, rtol=1e20, atol=tol))


def matrix_in_list(a, l):
    for b in l:
        if proportional(a, b):
            return True
    return False


def same_transformation(position, rotation, transformation):
    R = transformation[:, :3]
    t = transformation[:, 3]
    return proportional(position, t) and proportional(rotation, R)


class RelativePoseDataset:

    def __init__(self, num_points, noise, outlier_fraction, rotation_only=False):
        # generate a random pose for viewpoint 1
        position1 = np.zeros(3)
        rotation1 = np.eye(3)

        # generate a random pose for viewpoint 2
        if rotation_only:
            position2 = np.zeros(3)
        else:
            position2 = generateRandomTranslation(2.0)
        rotation2 = generateRandomRotation(0.5)

        # derive correspondences based on random point-cloud
        self.generateCorrespondences(
            position1, rotation1, position2, rotation2,
            num_points, noise, outlier_fraction)

        # Extract the relative pose
        self.position, self.rotation = extractRelativePose(
            position1, position2, rotation1, rotation2)
        if not rotation_only:
            self.essential = essentialMatrix(self.position, self.rotation)

    def generateCorrespondences(self,
                                position1, rotation1,
                                position2, rotation2,
                                num_points,
                                noise, outlier_fraction):
        min_depth = 4
        max_depth = 8

        # initialize point-cloud
        self.points = np.empty((num_points, 3))
        for i in range(num_points):
            self.points[i] = generateRandomPoint(max_depth, min_depth)

        self.bearing_vectors1 = np.empty((num_points, 3))
        self.bearing_vectors2 = np.empty((num_points, 3))
        for i in range(num_points):
            # get the point in viewpoint 1
            body_point1 = rotation1.T.dot(self.points[i] - position1)

            # get the point in viewpoint 2
            body_point2 = rotation2.T.dot(self.points[i] - position2)

            self.bearing_vectors1[i] = normalized(body_point1)
            self.bearing_vectors2[i] = normalized(body_point2)

            # add noise
            if noise > 0.0:
                self.bearing_vectors1[i] = addNoise(noise, self.bearing_vectors1[i])
                self.bearing_vectors2[i] = addNoise(noise, self.bearing_vectors2[i])

        # add outliers
        num_outliers = int(outlier_fraction * num_points)
        for i in range(num_outliers):
            # create random point
            p = generateRandomPoint(max_depth, min_depth)

            # project this point into viewpoint 2
            body_point = rotation2.T.dot(p - position2)

            # normalize the bearing vector
            self.bearing_vectors2[i] = normalized(body_point)


def test_relative_pose():
    print("Testing relative pose")

    d = RelativePoseDataset(10, 0.0, 0.0)

    # running experiments
    twopt_translation = pyopengv.relative_pose_twopt(
        d.bearing_vectors1, d.bearing_vectors2, d.rotation)
    fivept_nister_essentials = pyopengv.relative_pose_fivept_nister(
        d.bearing_vectors1, d.bearing_vectors2)
    fivept_kneip_rotations = pyopengv.relative_pose_fivept_kneip(
        d.bearing_vectors1, d.bearing_vectors2)
    sevenpt_essentials = pyopengv.relative_pose_sevenpt(d.bearing_vectors1, d.bearing_vectors2)
    eightpt_essential = pyopengv.relative_pose_eightpt(d.bearing_vectors1, d.bearing_vectors2)
    t_perturbed, R_perturbed = getPerturbedPose(d.position, d.rotation, 0.01)
    eigensolver_rotation = pyopengv.relative_pose_eigensolver(
        d.bearing_vectors1, d.bearing_vectors2, R_perturbed)
    t_perturbed, R_perturbed = getPerturbedPose(d.position, d.rotation, 0.1)
    nonlinear_transformation = pyopengv.relative_pose_optimize_nonlinear(
        d.bearing_vectors1, d.bearing_vectors2, t_perturbed, R_perturbed)

    assert proportional(d.position, twopt_translation)
    assert matrix_in_list(d.essential, fivept_nister_essentials)
    assert matrix_in_list(d.rotation, fivept_kneip_rotations)
    assert matrix_in_list(d.essential, sevenpt_essentials)
    assert proportional(d.essential, eightpt_essential)
    assert proportional(d.rotation, eigensolver_rotation)
    assert same_transformation(d.position, d.rotation, nonlinear_transformation)

    print("Done testing relative pose")


def test_relative_pose_ransac():
    print("Testing relative pose ransac")

    d = RelativePoseDataset(100, 0.0, 0.3)

    ransac_transformation = pyopengv.relative_pose_ransac(
        d.bearing_vectors1, d.bearing_vectors2, "NISTER", 0.01, 1000)

    assert same_transformation(d.position, d.rotation, ransac_transformation)

    print("Done testing relative pose ransac")


def test_relative_pose_ransac_rotation_only():
    print("Testing relative pose ransac rotation only")

    d = RelativePoseDataset(100, 0.0, 0.3, rotation_only=True)

    ransac_rotation = pyopengv.relative_pose_ransac_rotation_only(
        d.bearing_vectors1, d.bearing_vectors2, 0.01, 1000)

    assert proportional(d.rotation, ransac_rotation)

    print("Done testing relative pose ransac rotation only")


def test_triangulation():
    print("Testing triangulation")

    d = RelativePoseDataset(10, 0.0, 0.0)

    points1 = pyopengv.triangulation_triangulate(
        d.bearing_vectors1, d.bearing_vectors2, d.position, d.rotation)

    assert np.allclose(d.points, points1)

    points2 = pyopengv.triangulation_triangulate2(
        d.bearing_vectors1, d.bearing_vectors2, d.position, d.rotation)

    assert np.allclose(d.points, points2)

    print("Done testing triangulation")


if __name__ == "__main__":
    test_relative_pose()
    test_relative_pose_ransac()
    test_relative_pose_ransac_rotation_only()
    test_triangulation()