File: os_posix.cpp

package info (click to toggle)
openjdk-11-jre-dcevm 11.0.12%2B7-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 221,052 kB
  • sloc: java: 1,360,115; cpp: 832,709; ansic: 209,376; xml: 62,473; sh: 8,122; asm: 3,279; python: 1,661; javascript: 942; makefile: 382; sed: 172; perl: 114
file content (2263 lines) | stat: -rw-r--r-- 74,054 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
/*
 * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "jvm.h"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp"
#include "utilities/globalDefinitions.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/os.hpp"
#include "services/memTracker.hpp"
#include "utilities/align.hpp"
#include "utilities/events.hpp"
#include "utilities/formatBuffer.hpp"
#include "utilities/macros.hpp"
#include "utilities/vmError.hpp"

#include <dlfcn.h>
#include <grp.h>
#include <pwd.h>
#include <pthread.h>
#include <signal.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/utsname.h>
#include <time.h>
#include <unistd.h>
#include <utmpx.h>

// Todo: provide a os::get_max_process_id() or similar. Number of processes
// may have been configured, can be read more accurately from proc fs etc.
#ifndef MAX_PID
#define MAX_PID INT_MAX
#endif
#define IS_VALID_PID(p) (p > 0 && p < MAX_PID)

#define ROOT_UID 0

#ifndef MAP_ANONYMOUS
  #define MAP_ANONYMOUS MAP_ANON
#endif

#define check_with_errno(check_type, cond, msg)                             \
  do {                                                                      \
    int err = errno;                                                        \
    check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err),   \
               os::errno_name(err));                                        \
} while (false)

#define assert_with_errno(cond, msg)    check_with_errno(assert, cond, msg)
#define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)

// Check core dump limit and report possible place where core can be found
void os::check_dump_limit(char* buffer, size_t bufferSize) {
  if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
    jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line");
    VMError::record_coredump_status(buffer, false);
    return;
  }

  int n;
  struct rlimit rlim;
  bool success;

  char core_path[PATH_MAX];
  n = get_core_path(core_path, PATH_MAX);

  if (n <= 0) {
    jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
    success = true;
#ifdef LINUX
  } else if (core_path[0] == '"') { // redirect to user process
    jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
    success = true;
#endif
  } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
    jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
    success = true;
  } else {
    switch(rlim.rlim_cur) {
      case RLIM_INFINITY:
        jio_snprintf(buffer, bufferSize, "%s", core_path);
        success = true;
        break;
      case 0:
        jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
        success = false;
        break;
      default:
        jio_snprintf(buffer, bufferSize, "%s (max size " UINT64_FORMAT " kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, uint64_t(rlim.rlim_cur) / 1024);
        success = true;
        break;
    }
  }

  VMError::record_coredump_status(buffer, success);
}

int os::get_native_stack(address* stack, int frames, int toSkip) {
  int frame_idx = 0;
  int num_of_frames;  // number of frames captured
  frame fr = os::current_frame();
  while (fr.pc() && frame_idx < frames) {
    if (toSkip > 0) {
      toSkip --;
    } else {
      stack[frame_idx ++] = fr.pc();
    }
    if (fr.fp() == NULL || fr.cb() != NULL ||
        fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;

    if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
      fr = os::get_sender_for_C_frame(&fr);
    } else {
      break;
    }
  }
  num_of_frames = frame_idx;
  for (; frame_idx < frames; frame_idx ++) {
    stack[frame_idx] = NULL;
  }

  return num_of_frames;
}


bool os::unsetenv(const char* name) {
  assert(name != NULL, "Null pointer");
  return (::unsetenv(name) == 0);
}

int os::get_last_error() {
  return errno;
}

bool os::is_debugger_attached() {
  // not implemented
  return false;
}

void os::wait_for_keypress_at_exit(void) {
  // don't do anything on posix platforms
  return;
}

int os::create_file_for_heap(const char* dir) {

  const char name_template[] = "/jvmheap.XXXXXX";

  size_t fullname_len = strlen(dir) + strlen(name_template);
  char *fullname = (char*)os::malloc(fullname_len + 1, mtInternal);
  if (fullname == NULL) {
    vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno)));
    return -1;
  }
  int n = snprintf(fullname, fullname_len + 1, "%s%s", dir, name_template);
  assert((size_t)n == fullname_len, "Unexpected number of characters in string");

  os::native_path(fullname);

  sigset_t set, oldset;
  int ret = sigfillset(&set);
  assert_with_errno(ret == 0, "sigfillset returned error");

  // set the file creation mask.
  mode_t file_mode = S_IRUSR | S_IWUSR;

  // create a new file.
  int fd = mkstemp(fullname);

  if (fd < 0) {
    warning("Could not create file for heap with template %s", fullname);
    os::free(fullname);
    return -1;
  }

  // delete the name from the filesystem. When 'fd' is closed, the file (and space) will be deleted.
  ret = unlink(fullname);
  assert_with_errno(ret == 0, "unlink returned error");

  os::free(fullname);
  return fd;
}

static char* reserve_mmapped_memory(size_t bytes, char* requested_addr) {
  char * addr;
  int flags = MAP_PRIVATE NOT_AIX( | MAP_NORESERVE ) | MAP_ANONYMOUS;
  if (requested_addr != NULL) {
    assert((uintptr_t)requested_addr % os::vm_page_size() == 0, "Requested address should be aligned to OS page size");
    flags |= MAP_FIXED;
  }

  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  // touch an uncommitted page. Otherwise, the read/write might
  // succeed if we have enough swap space to back the physical page.
  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
                       flags, -1, 0);

  if (addr != MAP_FAILED) {
    MemTracker::record_virtual_memory_reserve((address)addr, bytes, CALLER_PC);
    return addr;
  }
  return NULL;
}

static int util_posix_fallocate(int fd, off_t offset, off_t len) {
#ifdef __APPLE__
  fstore_t store = { F_ALLOCATECONTIG, F_PEOFPOSMODE, 0, len };
  // First we try to get a continuous chunk of disk space
  int ret = fcntl(fd, F_PREALLOCATE, &store);
  if (ret == -1) {
    // Maybe we are too fragmented, try to allocate non-continuous range
    store.fst_flags = F_ALLOCATEALL;
    ret = fcntl(fd, F_PREALLOCATE, &store);
  }
  if(ret != -1) {
    return ftruncate(fd, len);
  }
  return -1;
#else
  return posix_fallocate(fd, offset, len);
#endif
}

// Map the given address range to the provided file descriptor.
char* os::map_memory_to_file(char* base, size_t size, int fd) {
  assert(fd != -1, "File descriptor is not valid");

  // allocate space for the file
  int ret = util_posix_fallocate(fd, 0, (off_t)size);
  if (ret != 0) {
    vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory. error(%d)", ret));
    return NULL;
  }

  int prot = PROT_READ | PROT_WRITE;
  int flags = MAP_SHARED;
  if (base != NULL) {
    flags |= MAP_FIXED;
  }
  char* addr = (char*)mmap(base, size, prot, flags, fd, 0);

  if (addr == MAP_FAILED) {
    warning("Failed mmap to file. (%s)", os::strerror(errno));
    return NULL;
  }
  if (base != NULL && addr != base) {
    if (!os::release_memory(addr, size)) {
      warning("Could not release memory on unsuccessful file mapping");
    }
    return NULL;
  }
  return addr;
}

char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) {
  assert(fd != -1, "File descriptor is not valid");
  assert(base != NULL, "Base cannot be NULL");

  return map_memory_to_file(base, size, fd);
}

// Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
// so on posix, unmap the section at the start and at the end of the chunk that we mapped
// rather than unmapping and remapping the whole chunk to get requested alignment.
char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) {
  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
      "Alignment must be a multiple of allocation granularity (page size)");
  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");

  size_t extra_size = size + alignment;
  assert(extra_size >= size, "overflow, size is too large to allow alignment");

  char* extra_base;
  if (file_desc != -1) {
    // For file mapping, we do not call os:reserve_memory(extra_size, NULL, alignment, file_desc) because
    // we need to deal with shrinking of the file space later when we release extra memory after alignment.
    // We also cannot called os:reserve_memory() with file_desc set to -1 because on aix we might get SHM memory.
    // So here to call a helper function while reserve memory for us. After we have a aligned base,
    // we will replace anonymous mapping with file mapping.
    extra_base = reserve_mmapped_memory(extra_size, NULL);
    if (extra_base != NULL) {
      MemTracker::record_virtual_memory_reserve((address)extra_base, extra_size, CALLER_PC);
    }
  } else {
    extra_base = os::reserve_memory(extra_size, NULL, alignment);
  }

  if (extra_base == NULL) {
    return NULL;
  }

  // Do manual alignment
  char* aligned_base = align_up(extra_base, alignment);

  // [  |                                       |  ]
  // ^ extra_base
  //    ^ extra_base + begin_offset == aligned_base
  //     extra_base + begin_offset + size       ^
  //                       extra_base + extra_size ^
  // |<>| == begin_offset
  //                              end_offset == |<>|
  size_t begin_offset = aligned_base - extra_base;
  size_t end_offset = (extra_base + extra_size) - (aligned_base + size);

  if (begin_offset > 0) {
      os::release_memory(extra_base, begin_offset);
  }

  if (end_offset > 0) {
      os::release_memory(extra_base + begin_offset + size, end_offset);
  }

  if (file_desc != -1) {
    // After we have an aligned address, we can replace anonymous mapping with file mapping
    if (replace_existing_mapping_with_file_mapping(aligned_base, size, file_desc) == NULL) {
      vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
    }
    MemTracker::record_virtual_memory_commit((address)aligned_base, size, CALLER_PC);
  }
  return aligned_base;
}

int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
  // All supported POSIX platforms provide C99 semantics.
  int result = ::vsnprintf(buf, len, fmt, args);
  // If an encoding error occurred (result < 0) then it's not clear
  // whether the buffer is NUL terminated, so ensure it is.
  if ((result < 0) && (len > 0)) {
    buf[len - 1] = '\0';
  }
  return result;
}

int os::get_fileno(FILE* fp) {
  return NOT_AIX(::)fileno(fp);
}

struct tm* os::gmtime_pd(const time_t* clock, struct tm*  res) {
  return gmtime_r(clock, res);
}

void os::Posix::print_load_average(outputStream* st) {
  st->print("load average:");
  double loadavg[3];
  int res = os::loadavg(loadavg, 3);
  if (res != -1) {
    st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  } else {
    st->print(" Unavailable");
  }
  st->cr();
}

// boot/uptime information;
// unfortunately it does not work on macOS and Linux because the utx chain has no entry
// for reboot at least on my test machines
void os::Posix::print_uptime_info(outputStream* st) {
  int bootsec = -1;
  int currsec = time(NULL);
  struct utmpx* ent;
  setutxent();
  while ((ent = getutxent())) {
    if (!strcmp("system boot", ent->ut_line)) {
      bootsec = ent->ut_tv.tv_sec;
      break;
    }
  }

  if (bootsec != -1) {
    os::print_dhm(st, "OS uptime:", (long) (currsec-bootsec));
  }
}

static void print_rlimit(outputStream* st, const char* msg,
                         int resource, bool output_k = false) {
  struct rlimit rlim;

  st->print(" %s ", msg);
  int res = getrlimit(resource, &rlim);
  if (res == -1) {
    st->print("could not obtain value");
  } else {
    // soft limit
    if (rlim.rlim_cur == RLIM_INFINITY) { st->print("infinity"); }
    else {
      if (output_k) { st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024); }
      else { st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur)); }
    }
    // hard limit
    st->print("/");
    if (rlim.rlim_max == RLIM_INFINITY) { st->print("infinity"); }
    else {
      if (output_k) { st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_max) / 1024); }
      else { st->print(UINT64_FORMAT, uint64_t(rlim.rlim_max)); }
    }
  }
}

void os::Posix::print_rlimit_info(outputStream* st) {
  st->print("rlimit (soft/hard):");
  print_rlimit(st, "STACK", RLIMIT_STACK, true);
  print_rlimit(st, ", CORE", RLIMIT_CORE, true);

#if defined(AIX)
  st->print(", NPROC ");
  st->print("%d", sysconf(_SC_CHILD_MAX));

  print_rlimit(st, ", THREADS", RLIMIT_THREADS);
#elif !defined(SOLARIS)
  print_rlimit(st, ", NPROC", RLIMIT_NPROC);
#endif

  print_rlimit(st, ", NOFILE", RLIMIT_NOFILE);
  print_rlimit(st, ", AS", RLIMIT_AS, true);
  print_rlimit(st, ", CPU", RLIMIT_CPU);
  print_rlimit(st, ", DATA", RLIMIT_DATA, true);

  // maximum size of files that the process may create
  print_rlimit(st, ", FSIZE", RLIMIT_FSIZE, true);

#if defined(LINUX) || defined(__APPLE__)
  // maximum number of bytes of memory that may be locked into RAM
  // (rounded down to the nearest  multiple of system pagesize)
  print_rlimit(st, ", MEMLOCK", RLIMIT_MEMLOCK, true);
#endif

#if defined(SOLARIS)
  // maximum size of mapped address space of a process in bytes;
  // if the limit is exceeded, mmap and brk fail
  print_rlimit(st, ", VMEM", RLIMIT_VMEM, true);
#endif

  // MacOS; The maximum size (in bytes) to which a process's resident set size may grow.
#if defined(__APPLE__)
  print_rlimit(st, ", RSS", RLIMIT_RSS, true);
#endif

  st->cr();
}

void os::Posix::print_uname_info(outputStream* st) {
  // kernel
  st->print("uname:");
  struct utsname name;
  uname(&name);
  st->print("%s ", name.sysname);
#ifdef ASSERT
  st->print("%s ", name.nodename);
#endif
  st->print("%s ", name.release);
  st->print("%s ", name.version);
  st->print("%s", name.machine);
  st->cr();
}

void os::Posix::print_umask(outputStream* st, mode_t umsk) {
  st->print((umsk & S_IRUSR) ? "r" : "-");
  st->print((umsk & S_IWUSR) ? "w" : "-");
  st->print((umsk & S_IXUSR) ? "x" : "-");
  st->print((umsk & S_IRGRP) ? "r" : "-");
  st->print((umsk & S_IWGRP) ? "w" : "-");
  st->print((umsk & S_IXGRP) ? "x" : "-");
  st->print((umsk & S_IROTH) ? "r" : "-");
  st->print((umsk & S_IWOTH) ? "w" : "-");
  st->print((umsk & S_IXOTH) ? "x" : "-");
}

void os::Posix::print_user_info(outputStream* st) {
  unsigned id = (unsigned) ::getuid();
  st->print("uid  : %u ", id);
  id = (unsigned) ::geteuid();
  st->print("euid : %u ", id);
  id = (unsigned) ::getgid();
  st->print("gid  : %u ", id);
  id = (unsigned) ::getegid();
  st->print_cr("egid : %u", id);
  st->cr();

  mode_t umsk = ::umask(0);
  ::umask(umsk);
  st->print("umask: %04o (", (unsigned) umsk);
  print_umask(st, umsk);
  st->print_cr(")");
  st->cr();
}


bool os::get_host_name(char* buf, size_t buflen) {
  struct utsname name;
  uname(&name);
  jio_snprintf(buf, buflen, "%s", name.nodename);
  return true;
}

bool os::has_allocatable_memory_limit(julong* limit) {
  struct rlimit rlim;
  int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
  // if there was an error when calling getrlimit, assume that there is no limitation
  // on virtual memory.
  bool result;
  if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
    result = false;
  } else {
    *limit = (julong)rlim.rlim_cur;
    result = true;
  }
#ifdef _LP64
  return result;
#else
  // arbitrary virtual space limit for 32 bit Unices found by testing. If
  // getrlimit above returned a limit, bound it with this limit. Otherwise
  // directly use it.
  const julong max_virtual_limit = (julong)3800*M;
  if (result) {
    *limit = MIN2(*limit, max_virtual_limit);
  } else {
    *limit = max_virtual_limit;
  }

  // bound by actually allocatable memory. The algorithm uses two bounds, an
  // upper and a lower limit. The upper limit is the current highest amount of
  // memory that could not be allocated, the lower limit is the current highest
  // amount of memory that could be allocated.
  // The algorithm iteratively refines the result by halving the difference
  // between these limits, updating either the upper limit (if that value could
  // not be allocated) or the lower limit (if the that value could be allocated)
  // until the difference between these limits is "small".

  // the minimum amount of memory we care about allocating.
  const julong min_allocation_size = M;

  julong upper_limit = *limit;

  // first check a few trivial cases
  if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
    *limit = upper_limit;
  } else if (!is_allocatable(min_allocation_size)) {
    // we found that not even min_allocation_size is allocatable. Return it
    // anyway. There is no point to search for a better value any more.
    *limit = min_allocation_size;
  } else {
    // perform the binary search.
    julong lower_limit = min_allocation_size;
    while ((upper_limit - lower_limit) > min_allocation_size) {
      julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
      temp_limit = align_down(temp_limit, min_allocation_size);
      if (is_allocatable(temp_limit)) {
        lower_limit = temp_limit;
      } else {
        upper_limit = temp_limit;
      }
    }
    *limit = lower_limit;
  }
  return true;
#endif
}

const char* os::get_current_directory(char *buf, size_t buflen) {
  return getcwd(buf, buflen);
}

FILE* os::open(int fd, const char* mode) {
  return ::fdopen(fd, mode);
}

void os::flockfile(FILE* fp) {
  ::flockfile(fp);
}

void os::funlockfile(FILE* fp) {
  ::funlockfile(fp);
}

DIR* os::opendir(const char* dirname) {
  assert(dirname != NULL, "just checking");
  return ::opendir(dirname);
}

struct dirent* os::readdir(DIR* dirp) {
  assert(dirp != NULL, "just checking");
  return ::readdir(dirp);
}

int os::closedir(DIR *dirp) {
  assert(dirp != NULL, "just checking");
  return ::closedir(dirp);
}

// Builds a platform dependent Agent_OnLoad_<lib_name> function name
// which is used to find statically linked in agents.
// Parameters:
//            sym_name: Symbol in library we are looking for
//            lib_name: Name of library to look in, NULL for shared libs.
//            is_absolute_path == true if lib_name is absolute path to agent
//                                     such as "/a/b/libL.so"
//            == false if only the base name of the library is passed in
//               such as "L"
char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
                                    bool is_absolute_path) {
  char *agent_entry_name;
  size_t len;
  size_t name_len;
  size_t prefix_len = strlen(JNI_LIB_PREFIX);
  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
  const char *start;

  if (lib_name != NULL) {
    name_len = strlen(lib_name);
    if (is_absolute_path) {
      // Need to strip path, prefix and suffix
      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
        lib_name = ++start;
      }
      if (strlen(lib_name) <= (prefix_len + suffix_len)) {
        return NULL;
      }
      lib_name += prefix_len;
      name_len = strlen(lib_name) - suffix_len;
    }
  }
  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
  if (agent_entry_name == NULL) {
    return NULL;
  }
  strcpy(agent_entry_name, sym_name);
  if (lib_name != NULL) {
    strcat(agent_entry_name, "_");
    strncat(agent_entry_name, lib_name, name_len);
  }
  return agent_entry_name;
}

int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  assert(thread == Thread::current(),  "thread consistency check");

  ParkEvent * const slp = thread->_SleepEvent ;
  slp->reset() ;
  OrderAccess::fence() ;

  if (interruptible) {
    jlong prevtime = javaTimeNanos();

    for (;;) {
      if (os::is_interrupted(thread, true)) {
        return OS_INTRPT;
      }

      jlong newtime = javaTimeNanos();

      if (newtime - prevtime < 0) {
        // time moving backwards, should only happen if no monotonic clock
        // not a guarantee() because JVM should not abort on kernel/glibc bugs
        assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected in os::sleep(interruptible)");
      } else {
        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
      }

      if (millis <= 0) {
        return OS_OK;
      }

      prevtime = newtime;

      {
        assert(thread->is_Java_thread(), "sanity check");
        JavaThread *jt = (JavaThread *) thread;
        ThreadBlockInVM tbivm(jt);
        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);

        jt->set_suspend_equivalent();
        // cleared by handle_special_suspend_equivalent_condition() or
        // java_suspend_self() via check_and_wait_while_suspended()

        slp->park(millis);

        // were we externally suspended while we were waiting?
        jt->check_and_wait_while_suspended();
      }
    }
  } else {
    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
    jlong prevtime = javaTimeNanos();

    for (;;) {
      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
      // the 1st iteration ...
      jlong newtime = javaTimeNanos();

      if (newtime - prevtime < 0) {
        // time moving backwards, should only happen if no monotonic clock
        // not a guarantee() because JVM should not abort on kernel/glibc bugs
        assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected on os::sleep(!interruptible)");
      } else {
        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
      }

      if (millis <= 0) break ;

      prevtime = newtime;
      slp->park(millis);
    }
    return OS_OK ;
  }
}

void os::naked_short_nanosleep(jlong ns) {
  struct timespec req;
  assert(ns > -1 && ns < NANOUNITS, "Un-interruptable sleep, short time use only");
  req.tv_sec = 0;
  req.tv_nsec = ns;
  ::nanosleep(&req, NULL);
  return;
}

void os::naked_short_sleep(jlong ms) {
  assert(ms < MILLIUNITS, "Un-interruptable sleep, short time use only");
  os::naked_short_nanosleep(ms * (NANOUNITS / MILLIUNITS));
  return;
}

////////////////////////////////////////////////////////////////////////////////
// interrupt support

void os::interrupt(Thread* thread) {
  debug_only(Thread::check_for_dangling_thread_pointer(thread);)

  OSThread* osthread = thread->osthread();

  if (!osthread->interrupted()) {
    osthread->set_interrupted(true);
    // More than one thread can get here with the same value of osthread,
    // resulting in multiple notifications.  We do, however, want the store
    // to interrupted() to be visible to other threads before we execute unpark().
    OrderAccess::fence();
    ParkEvent * const slp = thread->_SleepEvent ;
    if (slp != NULL) slp->unpark() ;
  }

  // For JSR166. Unpark even if interrupt status already was set
  if (thread->is_Java_thread())
    ((JavaThread*)thread)->parker()->unpark();

  ParkEvent * ev = thread->_ParkEvent ;
  if (ev != NULL) ev->unpark() ;
}

bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  debug_only(Thread::check_for_dangling_thread_pointer(thread);)

  OSThread* osthread = thread->osthread();

  bool interrupted = osthread->interrupted();

  // NOTE that since there is no "lock" around the interrupt and
  // is_interrupted operations, there is the possibility that the
  // interrupted flag (in osThread) will be "false" but that the
  // low-level events will be in the signaled state. This is
  // intentional. The effect of this is that Object.wait() and
  // LockSupport.park() will appear to have a spurious wakeup, which
  // is allowed and not harmful, and the possibility is so rare that
  // it is not worth the added complexity to add yet another lock.
  // For the sleep event an explicit reset is performed on entry
  // to os::sleep, so there is no early return. It has also been
  // recommended not to put the interrupted flag into the "event"
  // structure because it hides the issue.
  if (interrupted && clear_interrupted) {
    osthread->set_interrupted(false);
    // consider thread->_SleepEvent->reset() ... optional optimization
  }

  return interrupted;
}



static const struct {
  int sig; const char* name;
}
 g_signal_info[] =
  {
  {  SIGABRT,     "SIGABRT" },
#ifdef SIGAIO
  {  SIGAIO,      "SIGAIO" },
#endif
  {  SIGALRM,     "SIGALRM" },
#ifdef SIGALRM1
  {  SIGALRM1,    "SIGALRM1" },
#endif
  {  SIGBUS,      "SIGBUS" },
#ifdef SIGCANCEL
  {  SIGCANCEL,   "SIGCANCEL" },
#endif
  {  SIGCHLD,     "SIGCHLD" },
#ifdef SIGCLD
  {  SIGCLD,      "SIGCLD" },
#endif
  {  SIGCONT,     "SIGCONT" },
#ifdef SIGCPUFAIL
  {  SIGCPUFAIL,  "SIGCPUFAIL" },
#endif
#ifdef SIGDANGER
  {  SIGDANGER,   "SIGDANGER" },
#endif
#ifdef SIGDIL
  {  SIGDIL,      "SIGDIL" },
#endif
#ifdef SIGEMT
  {  SIGEMT,      "SIGEMT" },
#endif
  {  SIGFPE,      "SIGFPE" },
#ifdef SIGFREEZE
  {  SIGFREEZE,   "SIGFREEZE" },
#endif
#ifdef SIGGFAULT
  {  SIGGFAULT,   "SIGGFAULT" },
#endif
#ifdef SIGGRANT
  {  SIGGRANT,    "SIGGRANT" },
#endif
  {  SIGHUP,      "SIGHUP" },
  {  SIGILL,      "SIGILL" },
#ifdef SIGINFO
  {  SIGINFO,     "SIGINFO" },
#endif
  {  SIGINT,      "SIGINT" },
#ifdef SIGIO
  {  SIGIO,       "SIGIO" },
#endif
#ifdef SIGIOINT
  {  SIGIOINT,    "SIGIOINT" },
#endif
#ifdef SIGIOT
// SIGIOT is there for BSD compatibility, but on most Unices just a
// synonym for SIGABRT. The result should be "SIGABRT", not
// "SIGIOT".
#if (SIGIOT != SIGABRT )
  {  SIGIOT,      "SIGIOT" },
#endif
#endif
#ifdef SIGKAP
  {  SIGKAP,      "SIGKAP" },
#endif
  {  SIGKILL,     "SIGKILL" },
#ifdef SIGLOST
  {  SIGLOST,     "SIGLOST" },
#endif
#ifdef SIGLWP
  {  SIGLWP,      "SIGLWP" },
#endif
#ifdef SIGLWPTIMER
  {  SIGLWPTIMER, "SIGLWPTIMER" },
#endif
#ifdef SIGMIGRATE
  {  SIGMIGRATE,  "SIGMIGRATE" },
#endif
#ifdef SIGMSG
  {  SIGMSG,      "SIGMSG" },
#endif
  {  SIGPIPE,     "SIGPIPE" },
#ifdef SIGPOLL
  {  SIGPOLL,     "SIGPOLL" },
#endif
#ifdef SIGPRE
  {  SIGPRE,      "SIGPRE" },
#endif
  {  SIGPROF,     "SIGPROF" },
#ifdef SIGPTY
  {  SIGPTY,      "SIGPTY" },
#endif
#ifdef SIGPWR
  {  SIGPWR,      "SIGPWR" },
#endif
  {  SIGQUIT,     "SIGQUIT" },
#ifdef SIGRECONFIG
  {  SIGRECONFIG, "SIGRECONFIG" },
#endif
#ifdef SIGRECOVERY
  {  SIGRECOVERY, "SIGRECOVERY" },
#endif
#ifdef SIGRESERVE
  {  SIGRESERVE,  "SIGRESERVE" },
#endif
#ifdef SIGRETRACT
  {  SIGRETRACT,  "SIGRETRACT" },
#endif
#ifdef SIGSAK
  {  SIGSAK,      "SIGSAK" },
#endif
  {  SIGSEGV,     "SIGSEGV" },
#ifdef SIGSOUND
  {  SIGSOUND,    "SIGSOUND" },
#endif
#ifdef SIGSTKFLT
  {  SIGSTKFLT,    "SIGSTKFLT" },
#endif
  {  SIGSTOP,     "SIGSTOP" },
  {  SIGSYS,      "SIGSYS" },
#ifdef SIGSYSERROR
  {  SIGSYSERROR, "SIGSYSERROR" },
#endif
#ifdef SIGTALRM
  {  SIGTALRM,    "SIGTALRM" },
#endif
  {  SIGTERM,     "SIGTERM" },
#ifdef SIGTHAW
  {  SIGTHAW,     "SIGTHAW" },
#endif
  {  SIGTRAP,     "SIGTRAP" },
#ifdef SIGTSTP
  {  SIGTSTP,     "SIGTSTP" },
#endif
  {  SIGTTIN,     "SIGTTIN" },
  {  SIGTTOU,     "SIGTTOU" },
#ifdef SIGURG
  {  SIGURG,      "SIGURG" },
#endif
  {  SIGUSR1,     "SIGUSR1" },
  {  SIGUSR2,     "SIGUSR2" },
#ifdef SIGVIRT
  {  SIGVIRT,     "SIGVIRT" },
#endif
  {  SIGVTALRM,   "SIGVTALRM" },
#ifdef SIGWAITING
  {  SIGWAITING,  "SIGWAITING" },
#endif
#ifdef SIGWINCH
  {  SIGWINCH,    "SIGWINCH" },
#endif
#ifdef SIGWINDOW
  {  SIGWINDOW,   "SIGWINDOW" },
#endif
  {  SIGXCPU,     "SIGXCPU" },
  {  SIGXFSZ,     "SIGXFSZ" },
#ifdef SIGXRES
  {  SIGXRES,     "SIGXRES" },
#endif
  { -1, NULL }
};

// Returned string is a constant. For unknown signals "UNKNOWN" is returned.
const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {

  const char* ret = NULL;

#ifdef SIGRTMIN
  if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
    if (sig == SIGRTMIN) {
      ret = "SIGRTMIN";
    } else if (sig == SIGRTMAX) {
      ret = "SIGRTMAX";
    } else {
      jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
      return out;
    }
  }
#endif

  if (sig > 0) {
    for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
      if (g_signal_info[idx].sig == sig) {
        ret = g_signal_info[idx].name;
        break;
      }
    }
  }

  if (!ret) {
    if (!is_valid_signal(sig)) {
      ret = "INVALID";
    } else {
      ret = "UNKNOWN";
    }
  }

  if (out && outlen > 0) {
    strncpy(out, ret, outlen);
    out[outlen - 1] = '\0';
  }
  return out;
}

int os::Posix::get_signal_number(const char* signal_name) {
  char tmp[30];
  const char* s = signal_name;
  if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') {
    jio_snprintf(tmp, sizeof(tmp), "SIG%s", signal_name);
    s = tmp;
  }
  for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
    if (strcmp(g_signal_info[idx].name, s) == 0) {
      return g_signal_info[idx].sig;
    }
  }
  return -1;
}

int os::get_signal_number(const char* signal_name) {
  return os::Posix::get_signal_number(signal_name);
}

// Returns true if signal number is valid.
bool os::Posix::is_valid_signal(int sig) {
  // MacOS not really POSIX compliant: sigaddset does not return
  // an error for invalid signal numbers. However, MacOS does not
  // support real time signals and simply seems to have just 33
  // signals with no holes in the signal range.
#ifdef __APPLE__
  return sig >= 1 && sig < NSIG;
#else
  // Use sigaddset to check for signal validity.
  sigset_t set;
  sigemptyset(&set);
  if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
    return false;
  }
  return true;
#endif
}

bool os::Posix::is_sig_ignored(int sig) {
  struct sigaction oact;
  sigaction(sig, (struct sigaction*)NULL, &oact);
  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
    return true;
  } else {
    return false;
  }
}

// Returns:
// NULL for an invalid signal number
// "SIG<num>" for a valid but unknown signal number
// signal name otherwise.
const char* os::exception_name(int sig, char* buf, size_t size) {
  if (!os::Posix::is_valid_signal(sig)) {
    return NULL;
  }
  const char* const name = os::Posix::get_signal_name(sig, buf, size);
  if (strcmp(name, "UNKNOWN") == 0) {
    jio_snprintf(buf, size, "SIG%d", sig);
  }
  return buf;
}

#define NUM_IMPORTANT_SIGS 32
// Returns one-line short description of a signal set in a user provided buffer.
const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
  assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
  // Note: for shortness, just print out the first 32. That should
  // cover most of the useful ones, apart from realtime signals.
  for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
    const int rc = sigismember(set, sig);
    if (rc == -1 && errno == EINVAL) {
      buffer[sig-1] = '?';
    } else {
      buffer[sig-1] = rc == 0 ? '0' : '1';
    }
  }
  buffer[NUM_IMPORTANT_SIGS] = 0;
  return buffer;
}

// Prints one-line description of a signal set.
void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
  char buf[NUM_IMPORTANT_SIGS + 1];
  os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
  st->print("%s", buf);
}

// Writes one-line description of a combination of sigaction.sa_flags into a user
// provided buffer. Returns that buffer.
const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
  char* p = buffer;
  size_t remaining = size;
  bool first = true;
  int idx = 0;

  assert(buffer, "invalid argument");

  if (size == 0) {
    return buffer;
  }

  strncpy(buffer, "none", size);

  const struct {
    // NB: i is an unsigned int here because SA_RESETHAND is on some
    // systems 0x80000000, which is implicitly unsigned.  Assignining
    // it to an int field would be an overflow in unsigned-to-signed
    // conversion.
    unsigned int i;
    const char* s;
  } flaginfo [] = {
    { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
    { SA_ONSTACK,   "SA_ONSTACK"   },
    { SA_RESETHAND, "SA_RESETHAND" },
    { SA_RESTART,   "SA_RESTART"   },
    { SA_SIGINFO,   "SA_SIGINFO"   },
    { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
    { SA_NODEFER,   "SA_NODEFER"   },
#ifdef AIX
    { SA_ONSTACK,   "SA_ONSTACK"   },
    { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
#endif
    { 0, NULL }
  };

  for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
    if (flags & flaginfo[idx].i) {
      if (first) {
        jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
        first = false;
      } else {
        jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
      }
      const size_t len = strlen(p);
      p += len;
      remaining -= len;
    }
  }

  buffer[size - 1] = '\0';

  return buffer;
}

// Prints one-line description of a combination of sigaction.sa_flags.
void os::Posix::print_sa_flags(outputStream* st, int flags) {
  char buffer[0x100];
  os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
  st->print("%s", buffer);
}

// Helper function for os::Posix::print_siginfo_...():
// return a textual description for signal code.
struct enum_sigcode_desc_t {
  const char* s_name;
  const char* s_desc;
};

static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {

  const struct {
    int sig; int code; const char* s_code; const char* s_desc;
  } t1 [] = {
    { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
    { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
    { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
    { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
    { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
    { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
    { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
    { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
#if defined(IA64) && defined(LINUX)
    { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
    { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
#endif
    { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
    { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
    { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
    { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
    { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
    { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
    { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
    { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
    { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
    { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
#ifdef AIX
    // no explanation found what keyerr would be
    { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
#endif
#if defined(IA64) && !defined(AIX)
    { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
#endif
#if defined(__sparc) && defined(SOLARIS)
// define Solaris Sparc M7 ADI SEGV signals
#if !defined(SEGV_ACCADI)
#define SEGV_ACCADI 3
#endif
    { SIGSEGV, SEGV_ACCADI,  "SEGV_ACCADI",  "ADI not enabled for mapped object." },
#if !defined(SEGV_ACCDERR)
#define SEGV_ACCDERR 4
#endif
    { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
#if !defined(SEGV_ACCPERR)
#define SEGV_ACCPERR 5
#endif
    { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
#endif // defined(__sparc) && defined(SOLARIS)
    { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
    { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
    { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
    { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
    { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
    { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
    { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
    { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
    { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
    { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
    { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
#ifdef SIGPOLL
    { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
    { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
    { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
    { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
    { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
#endif
    { -1, -1, NULL, NULL }
  };

  // Codes valid in any signal context.
  const struct {
    int code; const char* s_code; const char* s_desc;
  } t2 [] = {
    { SI_USER,      "SI_USER",     "Signal sent by kill()." },
    { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
    { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
    { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
    { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
    // Linux specific
#ifdef SI_TKILL
    { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
#endif
#ifdef SI_DETHREAD
    { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
#endif
#ifdef SI_KERNEL
    { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
#endif
#ifdef SI_SIGIO
    { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
#endif

#ifdef AIX
    { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
    { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
#endif

#ifdef __sun
    { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
    { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
    { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
#endif

    { -1, NULL, NULL }
  };

  const char* s_code = NULL;
  const char* s_desc = NULL;

  for (int i = 0; t1[i].sig != -1; i ++) {
    if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
      s_code = t1[i].s_code;
      s_desc = t1[i].s_desc;
      break;
    }
  }

  if (s_code == NULL) {
    for (int i = 0; t2[i].s_code != NULL; i ++) {
      if (t2[i].code == si->si_code) {
        s_code = t2[i].s_code;
        s_desc = t2[i].s_desc;
      }
    }
  }

  if (s_code == NULL) {
    out->s_name = "unknown";
    out->s_desc = "unknown";
    return false;
  }

  out->s_name = s_code;
  out->s_desc = s_desc;

  return true;
}

bool os::signal_sent_by_kill(const void* siginfo) {
  const siginfo_t* const si = (const siginfo_t*)siginfo;
  return si->si_code == SI_USER || si->si_code == SI_QUEUE
#ifdef SI_TKILL
         || si->si_code == SI_TKILL
#endif
  ;
}

void os::print_siginfo(outputStream* os, const void* si0) {

  const siginfo_t* const si = (const siginfo_t*) si0;

  char buf[20];
  os->print("siginfo:");

  if (!si) {
    os->print(" <null>");
    return;
  }

  const int sig = si->si_signo;

  os->print(" si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));

  enum_sigcode_desc_t ed;
  get_signal_code_description(si, &ed);
  os->print(", si_code: %d (%s)", si->si_code, ed.s_name);

  if (si->si_errno) {
    os->print(", si_errno: %d", si->si_errno);
  }

  // Output additional information depending on the signal code.

  // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions,
  // so it depends on the context which member to use. For synchronous error signals,
  // we print si_addr, unless the signal was sent by another process or thread, in
  // which case we print out pid or tid of the sender.
  if (signal_sent_by_kill(si)) {
    const pid_t pid = si->si_pid;
    os->print(", si_pid: %ld", (long) pid);
    if (IS_VALID_PID(pid)) {
      const pid_t me = getpid();
      if (me == pid) {
        os->print(" (current process)");
      }
    } else {
      os->print(" (invalid)");
    }
    os->print(", si_uid: %ld", (long) si->si_uid);
    if (sig == SIGCHLD) {
      os->print(", si_status: %d", si->si_status);
    }
  } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
             sig == SIGTRAP || sig == SIGFPE) {
    os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
#ifdef SIGPOLL
  } else if (sig == SIGPOLL) {
    os->print(", si_band: %ld", si->si_band);
#endif
  }

}

bool os::signal_thread(Thread* thread, int sig, const char* reason) {
  OSThread* osthread = thread->osthread();
  if (osthread) {
#if defined (SOLARIS)
    // Note: we cannot use pthread_kill on Solaris - not because
    // its missing, but because we do not have the pthread_t id.
    int status = thr_kill(osthread->thread_id(), sig);
#else
    int status = pthread_kill(osthread->pthread_id(), sig);
#endif
    if (status == 0) {
      Events::log(Thread::current(), "sent signal %d to Thread " INTPTR_FORMAT " because %s.",
                  sig, p2i(thread), reason);
      return true;
    }
  }
  return false;
}

int os::Posix::unblock_thread_signal_mask(const sigset_t *set) {
  return pthread_sigmask(SIG_UNBLOCK, set, NULL);
}

address os::Posix::ucontext_get_pc(const ucontext_t* ctx) {
#if defined(AIX)
   return Aix::ucontext_get_pc(ctx);
#elif defined(BSD)
   return Bsd::ucontext_get_pc(ctx);
#elif defined(LINUX)
   return Linux::ucontext_get_pc(ctx);
#elif defined(SOLARIS)
   return Solaris::ucontext_get_pc(ctx);
#else
   VMError::report_and_die("unimplemented ucontext_get_pc");
#endif
}

void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) {
#if defined(AIX)
   Aix::ucontext_set_pc(ctx, pc);
#elif defined(BSD)
   Bsd::ucontext_set_pc(ctx, pc);
#elif defined(LINUX)
   Linux::ucontext_set_pc(ctx, pc);
#elif defined(SOLARIS)
   Solaris::ucontext_set_pc(ctx, pc);
#else
   VMError::report_and_die("unimplemented ucontext_get_pc");
#endif
}

char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) {
  size_t stack_size = 0;
  size_t guard_size = 0;
  int detachstate = 0;
  pthread_attr_getstacksize(attr, &stack_size);
  pthread_attr_getguardsize(attr, &guard_size);
  // Work around linux NPTL implementation error, see also os::create_thread() in os_linux.cpp.
  LINUX_ONLY(stack_size -= guard_size);
  pthread_attr_getdetachstate(attr, &detachstate);
  jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s",
    stack_size / 1024, guard_size / 1024,
    (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable"));
  return buf;
}

char* os::Posix::realpath(const char* filename, char* outbuf, size_t outbuflen) {

  if (filename == NULL || outbuf == NULL || outbuflen < 1) {
    assert(false, "os::Posix::realpath: invalid arguments.");
    errno = EINVAL;
    return NULL;
  }

  char* result = NULL;

  // This assumes platform realpath() is implemented according to POSIX.1-2008.
  // POSIX.1-2008 allows to specify NULL for the output buffer, in which case
  // output buffer is dynamically allocated and must be ::free()'d by the caller.
  char* p = ::realpath(filename, NULL);
  if (p != NULL) {
    if (strlen(p) < outbuflen) {
      strcpy(outbuf, p);
      result = outbuf;
    } else {
      errno = ENAMETOOLONG;
    }
    ::free(p); // *not* os::free
  } else {
    // Fallback for platforms struggling with modern Posix standards (AIX 5.3, 6.1). If realpath
    // returns EINVAL, this may indicate that realpath is not POSIX.1-2008 compatible and
    // that it complains about the NULL we handed down as user buffer.
    // In this case, use the user provided buffer but at least check whether realpath caused
    // a memory overwrite.
    if (errno == EINVAL) {
      outbuf[outbuflen - 1] = '\0';
      p = ::realpath(filename, outbuf);
      if (p != NULL) {
        guarantee(outbuf[outbuflen - 1] == '\0', "realpath buffer overwrite detected.");
        result = p;
      }
    }
  }
  return result;

}

int os::stat(const char *path, struct stat *sbuf) {
  return ::stat(path, sbuf);
}

char * os::native_path(char *path) {
  return path;
}

// Check minimum allowable stack sizes for thread creation and to initialize
// the java system classes, including StackOverflowError - depends on page
// size.
// The space needed for frames during startup is platform dependent. It
// depends on word size, platform calling conventions, C frame layout and
// interpreter/C1/C2 design decisions. Therefore this is given in a
// platform (os/cpu) dependent constant.
// To this, space for guard mechanisms is added, which depends on the
// page size which again depends on the concrete system the VM is running
// on. Space for libc guard pages is not included in this size.
jint os::Posix::set_minimum_stack_sizes() {
  size_t os_min_stack_allowed = SOLARIS_ONLY(thr_min_stack()) NOT_SOLARIS(PTHREAD_STACK_MIN);

  _java_thread_min_stack_allowed = _java_thread_min_stack_allowed +
                                   JavaThread::stack_guard_zone_size() +
                                   JavaThread::stack_shadow_zone_size();

  _java_thread_min_stack_allowed = align_up(_java_thread_min_stack_allowed, vm_page_size());
  _java_thread_min_stack_allowed = MAX2(_java_thread_min_stack_allowed, os_min_stack_allowed);

  size_t stack_size_in_bytes = ThreadStackSize * K;
  if (stack_size_in_bytes != 0 &&
      stack_size_in_bytes < _java_thread_min_stack_allowed) {
    // The '-Xss' and '-XX:ThreadStackSize=N' options both set
    // ThreadStackSize so we go with "Java thread stack size" instead
    // of "ThreadStackSize" to be more friendly.
    tty->print_cr("\nThe Java thread stack size specified is too small. "
                  "Specify at least " SIZE_FORMAT "k",
                  _java_thread_min_stack_allowed / K);
    return JNI_ERR;
  }

  // Make the stack size a multiple of the page size so that
  // the yellow/red zones can be guarded.
  JavaThread::set_stack_size_at_create(align_up(stack_size_in_bytes, vm_page_size()));

  // Reminder: a compiler thread is a Java thread.
  _compiler_thread_min_stack_allowed = _compiler_thread_min_stack_allowed +
                                       JavaThread::stack_guard_zone_size() +
                                       JavaThread::stack_shadow_zone_size();

  _compiler_thread_min_stack_allowed = align_up(_compiler_thread_min_stack_allowed, vm_page_size());
  _compiler_thread_min_stack_allowed = MAX2(_compiler_thread_min_stack_allowed, os_min_stack_allowed);

  stack_size_in_bytes = CompilerThreadStackSize * K;
  if (stack_size_in_bytes != 0 &&
      stack_size_in_bytes < _compiler_thread_min_stack_allowed) {
    tty->print_cr("\nThe CompilerThreadStackSize specified is too small. "
                  "Specify at least " SIZE_FORMAT "k",
                  _compiler_thread_min_stack_allowed / K);
    return JNI_ERR;
  }

  _vm_internal_thread_min_stack_allowed = align_up(_vm_internal_thread_min_stack_allowed, vm_page_size());
  _vm_internal_thread_min_stack_allowed = MAX2(_vm_internal_thread_min_stack_allowed, os_min_stack_allowed);

  stack_size_in_bytes = VMThreadStackSize * K;
  if (stack_size_in_bytes != 0 &&
      stack_size_in_bytes < _vm_internal_thread_min_stack_allowed) {
    tty->print_cr("\nThe VMThreadStackSize specified is too small. "
                  "Specify at least " SIZE_FORMAT "k",
                  _vm_internal_thread_min_stack_allowed / K);
    return JNI_ERR;
  }
  return JNI_OK;
}

// Called when creating the thread.  The minimum stack sizes have already been calculated
size_t os::Posix::get_initial_stack_size(ThreadType thr_type, size_t req_stack_size) {
  size_t stack_size;
  if (req_stack_size == 0) {
    stack_size = default_stack_size(thr_type);
  } else {
    stack_size = req_stack_size;
  }

  switch (thr_type) {
  case os::java_thread:
    // Java threads use ThreadStackSize which default value can be
    // changed with the flag -Xss
    if (req_stack_size == 0 && JavaThread::stack_size_at_create() > 0) {
      // no requested size and we have a more specific default value
      stack_size = JavaThread::stack_size_at_create();
    }
    stack_size = MAX2(stack_size,
                      _java_thread_min_stack_allowed);
    break;
  case os::compiler_thread:
    if (req_stack_size == 0 && CompilerThreadStackSize > 0) {
      // no requested size and we have a more specific default value
      stack_size = (size_t)(CompilerThreadStackSize * K);
    }
    stack_size = MAX2(stack_size,
                      _compiler_thread_min_stack_allowed);
    break;
  case os::vm_thread:
  case os::pgc_thread:
  case os::cgc_thread:
  case os::watcher_thread:
  default:  // presume the unknown thr_type is a VM internal
    if (req_stack_size == 0 && VMThreadStackSize > 0) {
      // no requested size and we have a more specific default value
      stack_size = (size_t)(VMThreadStackSize * K);
    }

    stack_size = MAX2(stack_size,
                      _vm_internal_thread_min_stack_allowed);
    break;
  }

  // pthread_attr_setstacksize() may require that the size be rounded up to the OS page size.
  // Be careful not to round up to 0. Align down in that case.
  if (stack_size <= SIZE_MAX - vm_page_size()) {
    stack_size = align_up(stack_size, vm_page_size());
  } else {
    stack_size = align_down(stack_size, vm_page_size());
  }

  return stack_size;
}

bool os::Posix::is_root(uid_t uid){
    return ROOT_UID == uid;
}

bool os::Posix::matches_effective_uid_or_root(uid_t uid) {
    return is_root(uid) || geteuid() == uid;
}

bool os::Posix::matches_effective_uid_and_gid_or_root(uid_t uid, gid_t gid) {
    return is_root(uid) || (geteuid() == uid && getegid() == gid);
}

Thread* os::ThreadCrashProtection::_protected_thread = NULL;
os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;

os::ThreadCrashProtection::ThreadCrashProtection() {
}

/*
 * See the caveats for this class in os_posix.hpp
 * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
 * method and returns false. If none of the signals are raised, returns true.
 * The callback is supposed to provide the method that should be protected.
 */
bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
  sigset_t saved_sig_mask;

  Thread::muxAcquire(&_crash_mux, "CrashProtection");

  _protected_thread = Thread::current_or_null();
  assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");

  // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
  // since on at least some systems (OS X) siglongjmp will restore the mask
  // for the process, not the thread
  pthread_sigmask(0, NULL, &saved_sig_mask);
  if (sigsetjmp(_jmpbuf, 0) == 0) {
    // make sure we can see in the signal handler that we have crash protection
    // installed
    _crash_protection = this;
    cb.call();
    // and clear the crash protection
    _crash_protection = NULL;
    _protected_thread = NULL;
    Thread::muxRelease(&_crash_mux);
    return true;
  }
  // this happens when we siglongjmp() back
  pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
  _crash_protection = NULL;
  _protected_thread = NULL;
  Thread::muxRelease(&_crash_mux);
  return false;
}

void os::ThreadCrashProtection::restore() {
  assert(_crash_protection != NULL, "must have crash protection");
  siglongjmp(_jmpbuf, 1);
}

void os::ThreadCrashProtection::check_crash_protection(int sig,
    Thread* thread) {

  if (thread != NULL &&
      thread == _protected_thread &&
      _crash_protection != NULL) {

    if (sig == SIGSEGV || sig == SIGBUS) {
      _crash_protection->restore();
    }
  }
}


// Shared pthread_mutex/cond based PlatformEvent implementation.
// Not currently usable by Solaris.

#ifndef SOLARIS

// Shared condattr object for use with relative timed-waits. Will be associated
// with CLOCK_MONOTONIC if available to avoid issues with time-of-day changes,
// but otherwise whatever default is used by the platform - generally the
// time-of-day clock.
static pthread_condattr_t _condAttr[1];

// Shared mutexattr to explicitly set the type to PTHREAD_MUTEX_NORMAL as not
// all systems (e.g. FreeBSD) map the default to "normal".
static pthread_mutexattr_t _mutexAttr[1];

// common basic initialization that is always supported
static void pthread_init_common(void) {
  int status;
  if ((status = pthread_condattr_init(_condAttr)) != 0) {
    fatal("pthread_condattr_init: %s", os::strerror(status));
  }
  if ((status = pthread_mutexattr_init(_mutexAttr)) != 0) {
    fatal("pthread_mutexattr_init: %s", os::strerror(status));
  }
  if ((status = pthread_mutexattr_settype(_mutexAttr, PTHREAD_MUTEX_NORMAL)) != 0) {
    fatal("pthread_mutexattr_settype: %s", os::strerror(status));
  }
}

#ifndef SOLARIS
sigset_t sigs;
struct sigaction sigact[NSIG];

struct sigaction* os::Posix::get_preinstalled_handler(int sig) {
  if (sigismember(&sigs, sig)) {
    return &sigact[sig];
  }
  return NULL;
}

void os::Posix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
  sigact[sig] = oldAct;
  sigaddset(&sigs, sig);
}
#endif

// Not all POSIX types and API's are available on all notionally "posix"
// platforms. If we have build-time support then we will check for actual
// runtime support via dlopen/dlsym lookup. This allows for running on an
// older OS version compared to the build platform. But if there is no
// build time support then there cannot be any runtime support as we do not
// know what the runtime types would be (for example clockid_t might be an
// int or int64_t).
//
#ifdef SUPPORTS_CLOCK_MONOTONIC

// This means we have clockid_t, clock_gettime et al and CLOCK_MONOTONIC

static int (*_clock_gettime)(clockid_t, struct timespec *);
static int (*_pthread_condattr_setclock)(pthread_condattr_t *, clockid_t);

static bool _use_clock_monotonic_condattr;

// Determine what POSIX API's are present and do appropriate
// configuration.
void os::Posix::init(void) {

  // NOTE: no logging available when this is called. Put logging
  // statements in init_2().

  // Copied from os::Linux::clock_init(). The duplication is temporary.

  // 1. Check for CLOCK_MONOTONIC support.

  void* handle = NULL;

  // For linux we need librt, for other OS we can find
  // this function in regular libc.
#ifdef NEEDS_LIBRT
  // We do dlopen's in this particular order due to bug in linux
  // dynamic loader (see 6348968) leading to crash on exit.
  handle = dlopen("librt.so.1", RTLD_LAZY);
  if (handle == NULL) {
    handle = dlopen("librt.so", RTLD_LAZY);
  }
#endif

  if (handle == NULL) {
    handle = RTLD_DEFAULT;
  }

  _clock_gettime = NULL;

  int (*clock_getres_func)(clockid_t, struct timespec*) =
    (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  int (*clock_gettime_func)(clockid_t, struct timespec*) =
    (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  if (clock_getres_func != NULL && clock_gettime_func != NULL) {
    // We assume that if both clock_gettime and clock_getres support
    // CLOCK_MONOTONIC then the OS provides true high-res monotonic clock.
    struct timespec res;
    struct timespec tp;
    if (clock_getres_func(CLOCK_MONOTONIC, &res) == 0 &&
        clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
      // Yes, monotonic clock is supported.
      _clock_gettime = clock_gettime_func;
    } else {
#ifdef NEEDS_LIBRT
      // Close librt if there is no monotonic clock.
      if (handle != RTLD_DEFAULT) {
        dlclose(handle);
      }
#endif
    }
  }

  // 2. Check for pthread_condattr_setclock support.

  _pthread_condattr_setclock = NULL;

  // libpthread is already loaded.
  int (*condattr_setclock_func)(pthread_condattr_t*, clockid_t) =
    (int (*)(pthread_condattr_t*, clockid_t))dlsym(RTLD_DEFAULT,
                                                   "pthread_condattr_setclock");
  if (condattr_setclock_func != NULL) {
    _pthread_condattr_setclock = condattr_setclock_func;
  }

  // Now do general initialization.

  pthread_init_common();

  int status;
  if (_pthread_condattr_setclock != NULL && _clock_gettime != NULL) {
    if ((status = _pthread_condattr_setclock(_condAttr, CLOCK_MONOTONIC)) != 0) {
      if (status == EINVAL) {
        _use_clock_monotonic_condattr = false;
        warning("Unable to use monotonic clock with relative timed-waits" \
                " - changes to the time-of-day clock may have adverse affects");
      } else {
        fatal("pthread_condattr_setclock: %s", os::strerror(status));
      }
    } else {
      _use_clock_monotonic_condattr = true;
    }
  } else {
    _use_clock_monotonic_condattr = false;
  }
}

void os::Posix::init_2(void) {
  log_info(os)("Use of CLOCK_MONOTONIC is%s supported",
               (_clock_gettime != NULL ? "" : " not"));
  log_info(os)("Use of pthread_condattr_setclock is%s supported",
               (_pthread_condattr_setclock != NULL ? "" : " not"));
  log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with %s",
               _use_clock_monotonic_condattr ? "CLOCK_MONOTONIC" : "the default clock");
#ifndef SOLARIS
  sigemptyset(&sigs);
#endif
}

#else // !SUPPORTS_CLOCK_MONOTONIC

void os::Posix::init(void) {
  pthread_init_common();
}

void os::Posix::init_2(void) {
  log_info(os)("Use of CLOCK_MONOTONIC is not supported");
  log_info(os)("Use of pthread_condattr_setclock is not supported");
  log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with the default clock");
#ifndef SOLARIS
  sigemptyset(&sigs);
#endif
}

#endif // SUPPORTS_CLOCK_MONOTONIC

os::PlatformEvent::PlatformEvent() {
  int status = pthread_cond_init(_cond, _condAttr);
  assert_status(status == 0, status, "cond_init");
  status = pthread_mutex_init(_mutex, _mutexAttr);
  assert_status(status == 0, status, "mutex_init");
  _event   = 0;
  _nParked = 0;
}

// Utility to convert the given timeout to an absolute timespec
// (based on the appropriate clock) to use with pthread_cond_timewait.
// The clock queried here must be the clock used to manage the
// timeout of the condition variable.
//
// The passed in timeout value is either a relative time in nanoseconds
// or an absolute time in milliseconds. A relative timeout will be
// associated with CLOCK_MONOTONIC if available; otherwise, or if absolute,
// the default time-of-day clock will be used.

// Given time is a 64-bit value and the time_t used in the timespec is
// sometimes a signed-32-bit value we have to watch for overflow if times
// way in the future are given. Further on Solaris versions
// prior to 10 there is a restriction (see cond_timedwait) that the specified
// number of seconds, in abstime, is less than current_time + 100000000.
// As it will be over 20 years before "now + 100000000" will overflow we can
// ignore overflow and just impose a hard-limit on seconds using the value
// of "now + 100000000". This places a limit on the timeout of about 3.17
// years from "now".
//
#define MAX_SECS 100000000

// Calculate a new absolute time that is "timeout" nanoseconds from "now".
// "unit" indicates the unit of "now_part_sec" (may be nanos or micros depending
// on which clock is being used).
static void calc_rel_time(timespec* abstime, jlong timeout, jlong now_sec,
                          jlong now_part_sec, jlong unit) {
  time_t max_secs = now_sec + MAX_SECS;

  jlong seconds = timeout / NANOUNITS;
  timeout %= NANOUNITS; // remaining nanos

  if (seconds >= MAX_SECS) {
    // More seconds than we can add, so pin to max_secs.
    abstime->tv_sec = max_secs;
    abstime->tv_nsec = 0;
  } else {
    abstime->tv_sec = now_sec  + seconds;
    long nanos = (now_part_sec * (NANOUNITS / unit)) + timeout;
    if (nanos >= NANOUNITS) { // overflow
      abstime->tv_sec += 1;
      nanos -= NANOUNITS;
    }
    abstime->tv_nsec = nanos;
  }
}

// Unpack the given deadline in milliseconds since the epoch, into the given timespec.
// The current time in seconds is also passed in to enforce an upper bound as discussed above.
static void unpack_abs_time(timespec* abstime, jlong deadline, jlong now_sec) {
  time_t max_secs = now_sec + MAX_SECS;

  jlong seconds = deadline / MILLIUNITS;
  jlong millis = deadline % MILLIUNITS;

  if (seconds >= max_secs) {
    // Absolute seconds exceeds allowed max, so pin to max_secs.
    abstime->tv_sec = max_secs;
    abstime->tv_nsec = 0;
  } else {
    abstime->tv_sec = seconds;
    abstime->tv_nsec = millis * (NANOUNITS / MILLIUNITS);
  }
}

static void to_abstime(timespec* abstime, jlong timeout, bool isAbsolute) {
  DEBUG_ONLY(int max_secs = MAX_SECS;)

  if (timeout < 0) {
    timeout = 0;
  }

#ifdef SUPPORTS_CLOCK_MONOTONIC

  if (_use_clock_monotonic_condattr && !isAbsolute) {
    struct timespec now;
    int status = _clock_gettime(CLOCK_MONOTONIC, &now);
    assert_status(status == 0, status, "clock_gettime");
    calc_rel_time(abstime, timeout, now.tv_sec, now.tv_nsec, NANOUNITS);
    DEBUG_ONLY(max_secs += now.tv_sec;)
  } else {

#else

  { // Match the block scope.

#endif // SUPPORTS_CLOCK_MONOTONIC

    // Time-of-day clock is all we can reliably use.
    struct timeval now;
    int status = gettimeofday(&now, NULL);
    assert_status(status == 0, errno, "gettimeofday");
    if (isAbsolute) {
      unpack_abs_time(abstime, timeout, now.tv_sec);
    } else {
      calc_rel_time(abstime, timeout, now.tv_sec, now.tv_usec, MICROUNITS);
    }
    DEBUG_ONLY(max_secs += now.tv_sec;)
  }

  assert(abstime->tv_sec >= 0, "tv_sec < 0");
  assert(abstime->tv_sec <= max_secs, "tv_sec > max_secs");
  assert(abstime->tv_nsec >= 0, "tv_nsec < 0");
  assert(abstime->tv_nsec < NANOUNITS, "tv_nsec >= NANOUNITS");
}

// PlatformEvent
//
// Assumption:
//    Only one parker can exist on an event, which is why we allocate
//    them per-thread. Multiple unparkers can coexist.
//
// _event serves as a restricted-range semaphore.
//   -1 : thread is blocked, i.e. there is a waiter
//    0 : neutral: thread is running or ready,
//        could have been signaled after a wait started
//    1 : signaled - thread is running or ready
//
//    Having three states allows for some detection of bad usage - see
//    comments on unpark().

void os::PlatformEvent::park() {       // AKA "down()"
  // Transitions for _event:
  //   -1 => -1 : illegal
  //    1 =>  0 : pass - return immediately
  //    0 => -1 : block; then set _event to 0 before returning

  // Invariant: Only the thread associated with the PlatformEvent
  // may call park().
  assert(_nParked == 0, "invariant");

  int v;

  // atomically decrement _event
  for (;;) {
    v = _event;
    if (Atomic::cmpxchg(v - 1, &_event, v) == v) break;
  }
  guarantee(v >= 0, "invariant");

  if (v == 0) { // Do this the hard way by blocking ...
    int status = pthread_mutex_lock(_mutex);
    assert_status(status == 0, status, "mutex_lock");
    guarantee(_nParked == 0, "invariant");
    ++_nParked;
    while (_event < 0) {
      // OS-level "spurious wakeups" are ignored
      status = pthread_cond_wait(_cond, _mutex);
      assert_status(status == 0, status, "cond_wait");
    }
    --_nParked;

    _event = 0;
    status = pthread_mutex_unlock(_mutex);
    assert_status(status == 0, status, "mutex_unlock");
    // Paranoia to ensure our locked and lock-free paths interact
    // correctly with each other.
    OrderAccess::fence();
  }
  guarantee(_event >= 0, "invariant");
}

int os::PlatformEvent::park(jlong millis) {
  // Transitions for _event:
  //   -1 => -1 : illegal
  //    1 =>  0 : pass - return immediately
  //    0 => -1 : block; then set _event to 0 before returning

  // Invariant: Only the thread associated with the Event/PlatformEvent
  // may call park().
  assert(_nParked == 0, "invariant");

  int v;
  // atomically decrement _event
  for (;;) {
    v = _event;
    if (Atomic::cmpxchg(v - 1, &_event, v) == v) break;
  }
  guarantee(v >= 0, "invariant");

  if (v == 0) { // Do this the hard way by blocking ...
    struct timespec abst;
    // We have to watch for overflow when converting millis to nanos,
    // but if millis is that large then we will end up limiting to
    // MAX_SECS anyway, so just do that here.
    if (millis / MILLIUNITS > MAX_SECS) {
      millis = jlong(MAX_SECS) * MILLIUNITS;
    }
    to_abstime(&abst, millis * (NANOUNITS / MILLIUNITS), false);

    int ret = OS_TIMEOUT;
    int status = pthread_mutex_lock(_mutex);
    assert_status(status == 0, status, "mutex_lock");
    guarantee(_nParked == 0, "invariant");
    ++_nParked;

    while (_event < 0) {
      status = pthread_cond_timedwait(_cond, _mutex, &abst);
      assert_status(status == 0 || status == ETIMEDOUT,
                    status, "cond_timedwait");
      // OS-level "spurious wakeups" are ignored unless the archaic
      // FilterSpuriousWakeups is set false. That flag should be obsoleted.
      if (!FilterSpuriousWakeups) break;
      if (status == ETIMEDOUT) break;
    }
    --_nParked;

    if (_event >= 0) {
      ret = OS_OK;
    }

    _event = 0;
    status = pthread_mutex_unlock(_mutex);
    assert_status(status == 0, status, "mutex_unlock");
    // Paranoia to ensure our locked and lock-free paths interact
    // correctly with each other.
    OrderAccess::fence();
    return ret;
  }
  return OS_OK;
}

void os::PlatformEvent::unpark() {
  // Transitions for _event:
  //    0 => 1 : just return
  //    1 => 1 : just return
  //   -1 => either 0 or 1; must signal target thread
  //         That is, we can safely transition _event from -1 to either
  //         0 or 1.
  // See also: "Semaphores in Plan 9" by Mullender & Cox
  //
  // Note: Forcing a transition from "-1" to "1" on an unpark() means
  // that it will take two back-to-back park() calls for the owning
  // thread to block. This has the benefit of forcing a spurious return
  // from the first park() call after an unpark() call which will help
  // shake out uses of park() and unpark() without checking state conditions
  // properly. This spurious return doesn't manifest itself in any user code
  // but only in the correctly written condition checking loops of ObjectMonitor,
  // Mutex/Monitor, Thread::muxAcquire and os::sleep

  if (Atomic::xchg(1, &_event) >= 0) return;

  int status = pthread_mutex_lock(_mutex);
  assert_status(status == 0, status, "mutex_lock");
  int anyWaiters = _nParked;
  assert(anyWaiters == 0 || anyWaiters == 1, "invariant");
  status = pthread_mutex_unlock(_mutex);
  assert_status(status == 0, status, "mutex_unlock");

  // Note that we signal() *after* dropping the lock for "immortal" Events.
  // This is safe and avoids a common class of futile wakeups.  In rare
  // circumstances this can cause a thread to return prematurely from
  // cond_{timed}wait() but the spurious wakeup is benign and the victim
  // will simply re-test the condition and re-park itself.
  // This provides particular benefit if the underlying platform does not
  // provide wait morphing.

  if (anyWaiters != 0) {
    status = pthread_cond_signal(_cond);
    assert_status(status == 0, status, "cond_signal");
  }
}

// JSR166 support

 os::PlatformParker::PlatformParker() {
  int status;
  status = pthread_cond_init(&_cond[REL_INDEX], _condAttr);
  assert_status(status == 0, status, "cond_init rel");
  status = pthread_cond_init(&_cond[ABS_INDEX], NULL);
  assert_status(status == 0, status, "cond_init abs");
  status = pthread_mutex_init(_mutex, _mutexAttr);
  assert_status(status == 0, status, "mutex_init");
  _cur_index = -1; // mark as unused
}

// Parker::park decrements count if > 0, else does a condvar wait.  Unpark
// sets count to 1 and signals condvar.  Only one thread ever waits
// on the condvar. Contention seen when trying to park implies that someone
// is unparking you, so don't wait. And spurious returns are fine, so there
// is no need to track notifications.

void Parker::park(bool isAbsolute, jlong time) {

  // Optional fast-path check:
  // Return immediately if a permit is available.
  // We depend on Atomic::xchg() having full barrier semantics
  // since we are doing a lock-free update to _counter.
  if (Atomic::xchg(0, &_counter) > 0) return;

  Thread* thread = Thread::current();
  assert(thread->is_Java_thread(), "Must be JavaThread");
  JavaThread *jt = (JavaThread *)thread;

  // Optional optimization -- avoid state transitions if there's
  // an interrupt pending.
  if (Thread::is_interrupted(thread, false)) {
    return;
  }

  // Next, demultiplex/decode time arguments
  struct timespec absTime;
  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
    return;
  }
  if (time > 0) {
    to_abstime(&absTime, time, isAbsolute);
  }

  // Enter safepoint region
  // Beware of deadlocks such as 6317397.
  // The per-thread Parker:: mutex is a classic leaf-lock.
  // In particular a thread must never block on the Threads_lock while
  // holding the Parker:: mutex.  If safepoints are pending both the
  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  ThreadBlockInVM tbivm(jt);

  // Don't wait if cannot get lock since interference arises from
  // unparking. Also re-check interrupt before trying wait.
  if (Thread::is_interrupted(thread, false) ||
      pthread_mutex_trylock(_mutex) != 0) {
    return;
  }

  int status;
  if (_counter > 0)  { // no wait needed
    _counter = 0;
    status = pthread_mutex_unlock(_mutex);
    assert_status(status == 0, status, "invariant");
    // Paranoia to ensure our locked and lock-free paths interact
    // correctly with each other and Java-level accesses.
    OrderAccess::fence();
    return;
  }

  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  jt->set_suspend_equivalent();
  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()

  assert(_cur_index == -1, "invariant");
  if (time == 0) {
    _cur_index = REL_INDEX; // arbitrary choice when not timed
    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
    assert_status(status == 0, status, "cond_timedwait");
  }
  else {
    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
    assert_status(status == 0 || status == ETIMEDOUT,
                  status, "cond_timedwait");
  }
  _cur_index = -1;

  _counter = 0;
  status = pthread_mutex_unlock(_mutex);
  assert_status(status == 0, status, "invariant");
  // Paranoia to ensure our locked and lock-free paths interact
  // correctly with each other and Java-level accesses.
  OrderAccess::fence();

  // If externally suspended while waiting, re-suspend
  if (jt->handle_special_suspend_equivalent_condition()) {
    jt->java_suspend_self();
  }
}

void Parker::unpark() {
  int status = pthread_mutex_lock(_mutex);
  assert_status(status == 0, status, "invariant");
  const int s = _counter;
  _counter = 1;
  // must capture correct index before unlocking
  int index = _cur_index;
  status = pthread_mutex_unlock(_mutex);
  assert_status(status == 0, status, "invariant");

  // Note that we signal() *after* dropping the lock for "immortal" Events.
  // This is safe and avoids a common class of futile wakeups.  In rare
  // circumstances this can cause a thread to return prematurely from
  // cond_{timed}wait() but the spurious wakeup is benign and the victim
  // will simply re-test the condition and re-park itself.
  // This provides particular benefit if the underlying platform does not
  // provide wait morphing.

  if (s < 1 && index != -1) {
    // thread is definitely parked
    status = pthread_cond_signal(&_cond[index]);
    assert_status(status == 0, status, "invariant");
  }
}


#endif // !SOLARIS