1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/*
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.security.MessageDigest;
import java.util.HashMap;
/*
* @test
* @bug 8220165
* @summary Verify correctness of large data sizes for GCM.
*/
/**
* This test stores the MD5 hash of correctly encrypted AES/GCM data for
* particular data lengths. Those lengths are run on SunJCE to verify returns
* the same MD5 hash of the encrypted data. These are not NIST data sets or
* provided by any other organization. The data sets are known good values,
* verified with two different JCE providers (solaris-sparcv9 ucrypto and
* linux SunJCE).
*
* Lengths around 64k are chosen because 64k is the point where
* com.sun.crypto.provider.GaloisCounterMode#doLastBlock() starts it's
* intrinsic warmup
*
* Plaintext is all zeros. Preset key and IV.
*
* The choice of MD5 is for speed. Shortcoming of the algorithm are
* not relevant for this test.
*/
public class GCMLargeDataKAT {
// Hash of encrypted results of AES/GCM for particular lengths.
// <data size, hash>
static final HashMap<Integer, String> results = new HashMap<>() {{
put(65534, "1397b91c31ce793895edace4e175bfee"); //64k-2
put(65535, "4ad101c9f450e686668b3f8f05db96f0"); //64k-1
put(65536, "fbfaee3451acd3f603200d6be0f39b24"); //64k
put(65537, "e7dfca4a71495c65d20982c3c9b9813f"); //64k+1
put(67583, "c8ebdcb3532ec6c165de961341af7635"); //66k-1
put(67584, "36559d108dfd25dd29da3fec3455b9e5"); //66k
put(67585, "1d21b42d80ea179810744fc23dc228b6"); //66k+1
put(102400, "0d1544fcab20bbd4c8103b9d273f2c82"); //100k
put(102401, "f2d53ef65fd12d0a861368659b23ea2e"); //100k+1
put(102402, "97f0f524cf63d2d9d23d81e64d416ee0"); //100k+2
put(102403, "4a6b4af55b7d9016b64114d6813d639c"); //100k+3
put(102404, "ba63cc131fcde2f12ddf2ac634201be8"); //100k+4
put(102405, "673d05c7fe5e283e42e5c0d049fdcea6"); //100k+5
put(102406, "76cc99a7850ce857eb3cb43049cf9877"); //100k+6
put(102407, "65863f99072cf2eb7fce18bd78b33f4e"); //100k+7
put(102408, "b9184f0f272682cc1f791fa7070eddd4"); //100k+8
put(102409, "45fe36afef43cc665bf22a9ca200c3c2"); //100k+9
put(102410, "67249e41646edcb37a78a61b0743cf11"); //100k+0
put(102411, "ffdc611e29c8849842e81ec78f32c415"); //100k+11
put(102412, "b7fde7fd52221057dccc1c181a140125"); //100k+12
put(102413, "4b1d6c64d56448105e5613157e69c0ae"); //100k+13
put(102414, "6d2c0b26c0c8785c8eec3298a5f0080c"); //100k+14
put(102415, "1df2061b114fbe56bdf3717e3ee61ef9"); //100k+15
put(102416, "a691742692c683ac9d1254df5fc5f768"); //100k+16
}};
static final int HIGHLEN = 102416;
static final int GCM_TAG_LENGTH = 16;
static final byte[] iv = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
static final byte[] key_code = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
static final GCMParameterSpec spec =
new GCMParameterSpec(GCM_TAG_LENGTH * 8, iv);
static final SecretKey key = new SecretKeySpec(key_code, "AES");
static boolean testresult = true;
static byte[] plaintext = new byte[HIGHLEN];
static MessageDigest md5;
Cipher cipher;
GCMLargeDataKAT() {
}
byte[] encrypt(int inLen) {
try {
cipher = Cipher.getInstance("AES/GCM/NoPadding", "SunJCE");
cipher.init(Cipher.ENCRYPT_MODE, key, spec);
return cipher.doFinal(plaintext, 0, inLen);
} catch (Exception e) {
System.err.println("Encrypt Failure (length = " + inLen + ") : " +
e.getMessage());
e.printStackTrace();
}
return new byte[0];
}
static byte[] hash(byte[] data) {
return md5.digest(data);
}
// Decrypt the data and return a boolean if the plaintext is all 0's.
boolean decrypt(byte[] data) {
byte[] result = null;
int len = data.length - GCM_TAG_LENGTH;
if (data.length == 0) {
return false;
}
try {
cipher = Cipher.getInstance("AES/GCM/NoPadding", "SunJCE");
cipher.init(Cipher.DECRYPT_MODE, key, spec);
result = cipher.doFinal(data);
} catch (Exception e) {
System.err.println("Decrypt Failure (length = " + len + ") : " +
e.getMessage());
e.printStackTrace();
return false;
}
if (result.length != len) {
System.err.println("Decrypt Failure (length = " + len +
") : plaintext length invalid = " + result.length);
}
// Return false if we find a non zero.
int i = 0;
while (result.length > i) {
if (result[i++] != 0) {
System.err.println("Decrypt Failure (length = " + len +
") : plaintext invalid, char index " + i);
return false;
}
}
return true;
}
void test() throws Exception {
// results order is not important
for (int l : results.keySet()) {
byte[] enc = new GCMLargeDataKAT().encrypt(l);
// verify hash with stored hash of that length
String hashstr = toHex(hash(enc));
boolean r = (hashstr.compareTo(results.get(l)) == 0);
System.out.println("---------------------------------------------");
// Encrypted test & results
System.out.println("Encrypt data size " + l + " \tResult: " +
(r ? "Pass" : "Fail"));
if (!r) {
if (enc.length != 0) {
System.out.println("\tExpected: " + results.get(l));
System.out.println("\tReturned: " + hashstr);
}
testresult = false;
continue;
}
// Decrypted test & results
r = decrypt(enc);
System.out.println("Decrypt data size " + l + " \tResult: " +
(r ? "Pass" : "Fail"));
if (!r) {
testresult = false;
}
}
// After test complete, throw an error if there was a failure
if (!testresult) {
throw new Exception("Tests failed");
}
}
/**
* With no argument, the test will run the predefined data lengths
*
* With an integer argument, this test will print the hash of the encrypted
* data of that integer length.
*
*/
public static void main(String args[]) throws Exception {
md5 = MessageDigest.getInstance("MD5");
if (args.length > 0) {
int len = Integer.parseInt(args[0]);
byte[] e = new GCMLargeDataKAT().encrypt(len);
System.out.println(toHex(hash(e)));
return;
}
new GCMLargeDataKAT().test();
}
// bytes to hex string
static String toHex(byte[] bytes) {
StringBuffer hexStringBuffer = new StringBuffer(32);
for (int i = 0; i < bytes.length; i++) {
hexStringBuffer.append(byteToHex(bytes[i]));
}
return hexStringBuffer.toString();
}
// byte to hex
static String byteToHex(byte num) {
char[] hexDigits = new char[2];
hexDigits[0] = Character.forDigit((num >> 4) & 0xF, 16);
hexDigits[1] = Character.forDigit((num & 0xF), 16);
return new String(hexDigits);
}
}
|