1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
/*
* Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @bug 4980035
* @summary Unit test for new methods:
*
* AffineTransform.getRotateInstance(double x, double y);
* AffineTransform.setToRotation(double x, double y);
* AffineTransform.rotate(double x, double y);
*
* AffineTransform.getQuadrantRotateInstance(int numquads);
* AffineTransform.setToQuadrantRotation(int numquads);
* AffineTransform.quadrantRotate(int numquads);
*
* @author flar
* @run main TestRotateMethods
*/
import java.awt.geom.AffineTransform;
import java.awt.geom.Point2D;
public class TestRotateMethods {
/* The maximum errors allowed, measured in double precision "ulps"
* Note that for most fields, the tests are extremely accurate - to
* within 3 ulps of the smaller value in the comparison
* For the translation components, the tests are still very accurate,
* but the absolute number of ulps can be noticeably higher when we
* use one of the rotate methods that takes an anchor point.
* Since a double precision value has 56 bits of precision, even
* 1024 ulps is extremely small as a ratio of the value.
*/
public static final double MAX_ULPS = 3.0;
public static final double MAX_ANCHOR_TX_ULPS = 1024.0;
public static double MAX_TX_ULPS = MAX_ULPS;
// Vectors for quadrant rotations
public static final double quadxvec[] = { 1.0, 0.0, -1.0, 0.0 };
public static final double quadyvec[] = { 0.0, 1.0, 0.0, -1.0 };
// Run tests once for each type of method:
// tx = AffineTransform.get<Rotate>Instance()
// tx.set<Rotate>()
// tx.<rotate>()
public static enum Mode { GET, SET, MOD };
// Used to accumulate and report largest differences encountered by tests
public static double maxulps = 0.0;
public static double maxtxulps = 0.0;
// Sample anchor points for testing.
public static Point2D zeropt = new Point2D.Double(0, 0);
public static Point2D testtxpts[] = {
new Point2D.Double( 5, 5),
new Point2D.Double( 20, -10),
new Point2D.Double(-Math.PI, Math.E),
};
public static void main(String argv[]) {
test(Mode.GET);
test(Mode.SET);
test(Mode.MOD);
System.out.println("Max scale and shear difference: "+maxulps+" ulps");
System.out.println("Max translate difference: "+maxtxulps+" ulps");
}
public static void test(Mode mode) {
MAX_TX_ULPS = MAX_ULPS; // Stricter tx testing with no anchor point
test(mode, 0.5, null);
test(mode, 1.0, null);
test(mode, 3.0, null);
// Anchor points make the tx values less reliable
MAX_TX_ULPS = MAX_ANCHOR_TX_ULPS;
for (int i = 0; i < testtxpts.length; i++) {
test(mode, 1.0, testtxpts[i]);
}
MAX_TX_ULPS = MAX_ULPS; // Restore to default
}
public static void verify(AffineTransform at1, AffineTransform at2,
Mode mode, double vectorscale, Point2D txpt,
String message, double num, String units)
{
if (!compare(at1, at2)) {
System.out.println("mode == "+mode);
System.out.println("vectorscale == "+vectorscale);
System.out.println("txpt == "+txpt);
System.out.println(at1+", type = "+at1.getType());
System.out.println(at2+", type = "+at2.getType());
System.out.println("ScaleX values differ by "+
ulps(at1.getScaleX(), at2.getScaleX())+" ulps");
System.out.println("ScaleY values differ by "+
ulps(at1.getScaleY(), at2.getScaleY())+" ulps");
System.out.println("ShearX values differ by "+
ulps(at1.getShearX(), at2.getShearX())+" ulps");
System.out.println("ShearY values differ by "+
ulps(at1.getShearY(), at2.getShearY())+" ulps");
System.out.println("TranslateX values differ by "+
ulps(at1.getTranslateX(),
at2.getTranslateX())+" ulps");
System.out.println("TranslateY values differ by "+
ulps(at1.getTranslateY(),
at2.getTranslateY())+" ulps");
throw new RuntimeException(message + num + units);
}
}
public static void test(Mode mode, double vectorscale, Point2D txpt) {
AffineTransform at1, at2, at3;
for (int deg = -720; deg <= 720; deg++) {
if ((deg % 90) == 0) continue;
double radians = Math.toRadians(deg);
double vecy = Math.sin(radians) * vectorscale;
double vecx = Math.cos(radians) * vectorscale;
at1 = makeAT(mode, txpt, radians);
at2 = makeAT(mode, txpt, vecx, vecy);
verify(at1, at2, mode, vectorscale, txpt,
"vector and radians do not match for ", deg, " degrees");
if (txpt == null) {
// Make sure output was same as a with a 0,0 anchor point
if (vectorscale == 1.0) {
// Only need to test radians method for one scale factor
at3 = makeAT(mode, zeropt, radians);
verify(at1, at3, mode, vectorscale, zeropt,
"radians not invariant with 0,0 translate at ",
deg, " degrees");
}
// But test vector methods with all scale factors
at3 = makeAT(mode, zeropt, vecx, vecy);
verify(at2, at3, mode, vectorscale, zeropt,
"vector not invariant with 0,0 translate at ",
deg, " degrees");
}
}
for (int quad = -8; quad <= 8; quad++) {
double degrees = quad * 90.0;
double radians = Math.toRadians(degrees);
double vecx = quadxvec[quad & 3] * vectorscale;
double vecy = quadyvec[quad & 3] * vectorscale;
at1 = makeAT(mode, txpt, radians);
at2 = makeAT(mode, txpt, vecx, vecy);
verify(at1, at2, mode, vectorscale, txpt,
"quadrant vector and radians do not match for ",
degrees, " degrees");
at2 = makeQuadAT(mode, txpt, quad);
verify(at1, at2, mode, vectorscale, txpt,
"quadrant and radians do not match for ",
quad, " quadrants");
if (txpt == null) {
at3 = makeQuadAT(mode, zeropt, quad);
verify(at2, at3, mode, vectorscale, zeropt,
"quadrant not invariant with 0,0 translate at ",
quad, " quadrants");
}
}
}
public static AffineTransform makeRandomAT() {
AffineTransform at = new AffineTransform();
at.scale(Math.random() * -10.0, Math.random() * 100.0);
at.rotate(Math.random() * Math.PI);
at.shear(Math.random(), Math.random());
at.translate(Math.random() * 300.0, Math.random() * -20.0);
return at;
}
public static AffineTransform makeAT(Mode mode, Point2D txpt,
double radians)
{
AffineTransform at;
double tx = (txpt == null) ? 0.0 : txpt.getX();
double ty = (txpt == null) ? 0.0 : txpt.getY();
switch (mode) {
case GET:
if (txpt != null) {
at = AffineTransform.getRotateInstance(radians, tx, ty);
} else {
at = AffineTransform.getRotateInstance(radians);
}
break;
case SET:
at = makeRandomAT();
if (txpt != null) {
at.setToRotation(radians, tx, ty);
} else {
at.setToRotation(radians);
}
break;
case MOD:
at = makeRandomAT();
at.setToIdentity();
if (txpt != null) {
at.rotate(radians, tx, ty);
} else {
at.rotate(radians);
}
break;
default:
throw new InternalError("unrecognized mode: "+mode);
}
return at;
}
public static AffineTransform makeAT(Mode mode, Point2D txpt,
double vx, double vy)
{
AffineTransform at;
double tx = (txpt == null) ? 0.0 : txpt.getX();
double ty = (txpt == null) ? 0.0 : txpt.getY();
switch (mode) {
case GET:
if (txpt != null) {
at = AffineTransform.getRotateInstance(vx, vy, tx, ty);
} else {
at = AffineTransform.getRotateInstance(vx, vy);
}
break;
case SET:
at = makeRandomAT();
if (txpt != null) {
at.setToRotation(vx, vy, tx, ty);
} else {
at.setToRotation(vx, vy);
}
break;
case MOD:
at = makeRandomAT();
at.setToIdentity();
if (txpt != null) {
at.rotate(vx, vy, tx, ty);
} else {
at.rotate(vx, vy);
}
break;
default:
throw new InternalError("unrecognized mode: "+mode);
}
return at;
}
public static AffineTransform makeQuadAT(Mode mode, Point2D txpt,
int quads)
{
AffineTransform at;
double tx = (txpt == null) ? 0.0 : txpt.getX();
double ty = (txpt == null) ? 0.0 : txpt.getY();
switch (mode) {
case GET:
if (txpt != null) {
at = AffineTransform.getQuadrantRotateInstance(quads, tx, ty);
} else {
at = AffineTransform.getQuadrantRotateInstance(quads);
}
break;
case SET:
at = makeRandomAT();
if (txpt != null) {
at.setToQuadrantRotation(quads, tx, ty);
} else {
at.setToQuadrantRotation(quads);
}
break;
case MOD:
at = makeRandomAT();
at.setToIdentity();
if (txpt != null) {
at.quadrantRotate(quads, tx, ty);
} else {
at.quadrantRotate(quads);
}
break;
default:
throw new InternalError("unrecognized mode: "+mode);
}
return at;
}
public static boolean compare(AffineTransform at1, AffineTransform at2) {
maxulps = Math.max(maxulps, ulps(at1.getScaleX(), at2.getScaleX()));
maxulps = Math.max(maxulps, ulps(at1.getScaleY(), at2.getScaleY()));
maxulps = Math.max(maxulps, ulps(at1.getShearX(), at2.getShearX()));
maxulps = Math.max(maxulps, ulps(at1.getShearY(), at2.getShearY()));
maxtxulps = Math.max(maxtxulps,
ulps(at1.getTranslateX(), at2.getTranslateX()));
maxtxulps = Math.max(maxtxulps,
ulps(at1.getTranslateY(), at2.getTranslateY()));
return (getModifiedType(at1) == getModifiedType(at2) &&
(compare(at1.getScaleX(), at2.getScaleX(), MAX_ULPS)) &&
(compare(at1.getScaleY(), at2.getScaleY(), MAX_ULPS)) &&
(compare(at1.getShearX(), at2.getShearX(), MAX_ULPS)) &&
(compare(at1.getShearY(), at2.getShearY(), MAX_ULPS)) &&
(compare(at1.getTranslateX(),
at2.getTranslateX(), MAX_TX_ULPS)) &&
(compare(at1.getTranslateY(),
at2.getTranslateY(), MAX_TX_ULPS)));
}
public static int getModifiedType(AffineTransform at) {
int type = at.getType();
// Some of the vector methods can introduce a tiny uniform scale
// at some angles...
if ((type & AffineTransform.TYPE_UNIFORM_SCALE) != 0) {
maxulps = Math.max(maxulps, ulps(at.getDeterminant(), 1.0));
if (ulps(at.getDeterminant(), 1.0) <= MAX_ULPS) {
// Really tiny - we will ignore it
type &= (~AffineTransform.TYPE_UNIFORM_SCALE);
}
}
return type;
}
public static boolean compare(double val1, double val2, double maxulps) {
return (ulps(val1, val2) <= maxulps);
}
public static double ulps(double val1, double val2) {
double diff = Math.abs(val1 - val2);
double ulpmax = Math.min(Math.ulp(val1), Math.ulp(val2));
return (diff / ulpmax);
}
}
|