1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
/*
* Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @library /test/lib
* @build jdk.test.lib.RandomFactory
* @run main ParseHexFloatingPoint
* @bug 4826774 8078672
* @summary Numerical tests for hexadecimal inputs to parse{Double, Float} (use -Dseed=X to set PRNG seed)
* @author Joseph D. Darcy
* @key randomness
*/
import jdk.test.lib.RandomFactory;
public class ParseHexFloatingPoint {
private ParseHexFloatingPoint(){}
public static final double infinityD = Double.POSITIVE_INFINITY;
public static final double NaND = Double.NaN;
static int test(String testName, String input,
double result, double expected) {
int failures =0;
if (Double.compare(result, expected) != 0 ) {
System.err.println("Failure for " + testName +
": For input " + input +
" expected " + expected +
" got " + result + ".");
}
return failures;
}
static int testCase(String input, double expected) {
int failures =0;
// Try different combination of letter components
input = input.toLowerCase(java.util.Locale.US);
String [] suffices = {"", "f", "F", "d", "D"};
String [] signs = {"", "-", "+"};
for(int i = 0; i < 2; i++) {
String s1 = input;
if(i == 1)
s1 = s1.replace('x', 'X');
for(int j = 0; j < 2; j++) {
String s2 = s1;
if(j == 1)
s2 = s2.replace('p', 'P');
for(int k = 0; k < 2; k++) {
String s3 = s2;
if(k == 1)
s3 = upperCaseHex(s3);
for(int m = 0; m < suffices.length; m++) {
String s4 = s3 + suffices[m];
for(int n = 0; n < signs.length; n++) {
String s5 = signs[n] + s4;
double result = Double.parseDouble(s5);
failures += test("Double.parseDouble",
s5, result, (signs[n].equals("-") ?
-expected:
expected));
}
}
}
}
}
return failures;
}
static String upperCaseHex(String s) {
return s.replace('a', 'A').replace('b', 'B').replace('c', 'C').
replace('d', 'D').replace('e','E').replace('f', 'F');
}
/*
* Test easy and tricky double rounding cases.
*/
static int doubleTests() {
/*
* A String, double pair
*/
class PairSD {
public String s;
public double d;
PairSD(String s, double d) {
this.s = s;
this.d = d;
}
}
int failures = 0;
// Hex strings that convert to three; test basic functionality
// of significand and exponent shift adjusts along with the
// no-op of adding leading zeros. These cases don't exercise
// the rounding code.
String leadingZeros = "0x0000000000000000000";
String [] threeTests = {
"0x.003p12",
"0x.006p11",
"0x.00cp10",
"0x.018p9",
"0x.3p4",
"0x.6p3",
"0x.cp2",
"0x1.8p1",
"0x3p0",
"0x6.0p-1",
"0xc.0p-2",
"0x18.0p-3",
"0x3000000p-24",
"0x3.0p0",
"0x3.000000p0",
};
for(int i=0; i < threeTests.length; i++) {
String input = threeTests[i];
failures += testCase(input, 3.0);
input.replaceFirst("^0x", leadingZeros);
failures += testCase(input, 3.0);
}
long bigExponents [] = {
2*Double.MAX_EXPONENT,
2*Double.MIN_EXPONENT,
(long)Integer.MAX_VALUE-1,
(long)Integer.MAX_VALUE,
(long)Integer.MAX_VALUE+1,
(long)Integer.MIN_VALUE-1,
(long)Integer.MIN_VALUE,
(long)Integer.MIN_VALUE+1,
Long.MAX_VALUE-1,
Long.MAX_VALUE,
Long.MIN_VALUE+1,
Long.MIN_VALUE,
};
// Test zero significand with large exponents.
for(int i = 0; i < bigExponents.length; i++) {
failures += testCase("0x0.0p"+Long.toString(bigExponents[i]) , 0.0);
}
// Test nonzero significand with large exponents.
for(int i = 0; i < bigExponents.length; i++) {
long exponent = bigExponents[i];
failures += testCase("0x10000.0p"+Long.toString(exponent) ,
(exponent <0?0.0:infinityD));
}
// Test significands with different lengths and bit patterns.
{
long signif = 0;
for(int i = 1; i <= 0xe; i++) {
signif = (signif <<4) | (long)i;
failures += testCase("0x"+Long.toHexString(signif)+"p0", signif);
}
}
PairSD [] testCases = {
new PairSD("0x0.0p0", 0.0/16.0),
new PairSD("0x0.1p0", 1.0/16.0),
new PairSD("0x0.2p0", 2.0/16.0),
new PairSD("0x0.3p0", 3.0/16.0),
new PairSD("0x0.4p0", 4.0/16.0),
new PairSD("0x0.5p0", 5.0/16.0),
new PairSD("0x0.6p0", 6.0/16.0),
new PairSD("0x0.7p0", 7.0/16.0),
new PairSD("0x0.8p0", 8.0/16.0),
new PairSD("0x0.9p0", 9.0/16.0),
new PairSD("0x0.ap0", 10.0/16.0),
new PairSD("0x0.bp0", 11.0/16.0),
new PairSD("0x0.cp0", 12.0/16.0),
new PairSD("0x0.dp0", 13.0/16.0),
new PairSD("0x0.ep0", 14.0/16.0),
new PairSD("0x0.fp0", 15.0/16.0),
// Half-way case between zero and MIN_VALUE rounds down to
// zero
new PairSD("0x1.0p-1075", 0.0),
// Slighly more than half-way case between zero and
// MIN_VALUES rounds up to zero.
new PairSD("0x1.1p-1075", Double.MIN_VALUE),
new PairSD("0x1.000000000001p-1075", Double.MIN_VALUE),
new PairSD("0x1.000000000000001p-1075", Double.MIN_VALUE),
// More subnormal rounding tests
new PairSD("0x0.fffffffffffff7fffffp-1022", Math.nextDown(Double.MIN_NORMAL)),
new PairSD("0x0.fffffffffffff8p-1022", Double.MIN_NORMAL),
new PairSD("0x0.fffffffffffff800000001p-1022",Double.MIN_NORMAL),
new PairSD("0x0.fffffffffffff80000000000000001p-1022",Double.MIN_NORMAL),
new PairSD("0x1.0p-1022", Double.MIN_NORMAL),
// Large value and overflow rounding tests
new PairSD("0x1.fffffffffffffp1023", Double.MAX_VALUE),
new PairSD("0x1.fffffffffffff0000000p1023", Double.MAX_VALUE),
new PairSD("0x1.fffffffffffff4p1023", Double.MAX_VALUE),
new PairSD("0x1.fffffffffffff7fffffp1023", Double.MAX_VALUE),
new PairSD("0x1.fffffffffffff8p1023", infinityD),
new PairSD("0x1.fffffffffffff8000001p1023", infinityD),
new PairSD("0x1.ffffffffffffep1023", Math.nextDown(Double.MAX_VALUE)),
new PairSD("0x1.ffffffffffffe0000p1023", Math.nextDown(Double.MAX_VALUE)),
new PairSD("0x1.ffffffffffffe8p1023", Math.nextDown(Double.MAX_VALUE)),
new PairSD("0x1.ffffffffffffe7p1023", Math.nextDown(Double.MAX_VALUE)),
new PairSD("0x1.ffffffffffffeffffffp1023", Double.MAX_VALUE),
new PairSD("0x1.ffffffffffffe8000001p1023", Double.MAX_VALUE),
};
for (int i = 0; i < testCases.length; i++) {
failures += testCase(testCases[i].s,testCases[i].d);
}
failures += significandAlignmentTests();
{
java.util.Random rand = RandomFactory.getRandom();
// Consistency check; double => hexadecimal => double
// preserves the original value.
for(int i = 0; i < 1000; i++) {
double d = rand.nextDouble();
failures += testCase(Double.toHexString(d), d);
}
}
return failures;
}
/*
* Verify rounding works the same regardless of how the
* significand is aligned on input. A useful extension could be
* to have this sort of test for strings near the overflow
* threshold.
*/
static int significandAlignmentTests() {
int failures = 0;
// baseSignif * 2^baseExp = nextDown(2.0)
long [] baseSignifs = {
0x1ffffffffffffe00L,
0x1fffffffffffff00L
};
double [] answers = {
Math.nextDown(Math.nextDown(2.0)),
Math.nextDown(2.0),
2.0
};
int baseExp = -60;
int count = 0;
for(int i = 0; i < 2; i++) {
for(long j = 0; j <= 0xfL; j++) {
for(long k = 0; k <= 8; k+= 4) { // k = {0, 4, 8}
long base = baseSignifs[i];
long testValue = base | (j<<4) | k;
int offset = 0;
// Calculate when significand should be incremented
// see table 4.7 in Koren book
if ((base & 0x100L) == 0L ) { // lsb is 0
if ( (j >= 8L) && // round is 1
((j & 0x7L) != 0 || k != 0 ) ) // sticky is 1
offset = 1;
}
else { // lsb is 1
if (j >= 8L) // round is 1
offset = 1;
}
double expected = answers[i+offset];
for(int m = -2; m <= 3; m++) {
count ++;
// Form equal value string and evaluate it
String s = "0x" +
Long.toHexString((m >=0) ?(testValue<<m):(testValue>>(-m))) +
"p" + (baseExp - m);
failures += testCase(s, expected);
}
}
}
}
return failures;
}
/*
* Test tricky float rounding cases. The code which
* reads in a hex string converts the string to a double value.
* If a float value is needed, the double value is cast to float.
* However, the cast be itself not always guaranteed to return the
* right result since:
*
* 1. hex string => double can discard a sticky bit which would
* influence a direct hex string => float conversion.
*
* 2. hex string => double => float can have a rounding to double
* precision which results in a larger float value while a direct
* hex string => float conversion would not round up.
*
* This method includes tests of the latter two possibilities.
*/
static int floatTests(){
int failures = 0;
/*
* A String, float pair
*/
class PairSD {
public String s;
public float f;
PairSD(String s, float f) {
this.s = s;
this.f = f;
}
}
String [][] roundingTestCases = {
// Target float value hard rouding version
{"0x1.000000p0", "0x1.0000000000001p0"},
// Try some values that should round up to nextUp(1.0f)
{"0x1.000002p0", "0x1.0000010000001p0"},
{"0x1.000002p0", "0x1.00000100000008p0"},
{"0x1.000002p0", "0x1.0000010000000fp0"},
{"0x1.000002p0", "0x1.00000100000001p0"},
{"0x1.000002p0", "0x1.00000100000000000000000000000000000000001p0"},
{"0x1.000002p0", "0x1.0000010000000fp0"},
// Potential double rounding cases
{"0x1.000002p0", "0x1.000002fffffffp0"},
{"0x1.000002p0", "0x1.000002fffffff8p0"},
{"0x1.000002p0", "0x1.000002ffffffffp0"},
{"0x1.000002p0", "0x1.000002ffff0ffp0"},
{"0x1.000002p0", "0x1.000002ffff0ff8p0"},
{"0x1.000002p0", "0x1.000002ffff0fffp0"},
{"0x1.000000p0", "0x1.000000fffffffp0"},
{"0x1.000000p0", "0x1.000000fffffff8p0"},
{"0x1.000000p0", "0x1.000000ffffffffp0"},
{"0x1.000000p0", "0x1.000000ffffffep0"},
{"0x1.000000p0", "0x1.000000ffffffe8p0"},
{"0x1.000000p0", "0x1.000000ffffffefp0"},
// Float subnormal cases
{"0x0.000002p-126", "0x0.0000010000001p-126"},
{"0x0.000002p-126", "0x0.00000100000000000001p-126"},
{"0x0.000006p-126", "0x0.0000050000001p-126"},
{"0x0.000006p-126", "0x0.00000500000000000001p-126"},
{"0x0.0p-149", "0x0.7ffffffffffffffp-149"},
{"0x1.0p-148", "0x1.3ffffffffffffffp-148"},
{"0x1.cp-147", "0x1.bffffffffffffffp-147"},
{"0x1.fffffcp-127", "0x1.fffffdffffffffp-127"},
};
String [] signs = {"", "-"};
for(int i = 0; i < roundingTestCases.length; i++) {
for(int j = 0; j < signs.length; j++) {
String expectedIn = signs[j]+roundingTestCases[i][0];
String resultIn = signs[j]+roundingTestCases[i][1];
float expected = Float.parseFloat(expectedIn);
float result = Float.parseFloat(resultIn);
if( Float.compare(expected, result) != 0) {
failures += 1;
System.err.println("" + (i+1));
System.err.println("Expected = " + Float.toHexString(expected));
System.err.println("Rounded = " + Float.toHexString(result));
System.err.println("Double = " + Double.toHexString(Double.parseDouble(resultIn)));
System.err.println("Input = " + resultIn);
System.err.println("");
}
}
}
return failures;
}
public static void main(String argv[]) {
int failures = 0;
failures += doubleTests();
failures += floatTests();
if (failures != 0) {
throw new RuntimeException("" + failures + " failures while " +
"testing hexadecimal floating-point " +
"parsing.");
}
}
}
|