1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
/*
* Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @library /test/lib
* @build jdk.test.lib.RandomFactory
* @run main CubeRootTests
* @bug 4347132 4939441 8078672
* @summary Tests for {Math, StrictMath}.cbrt (use -Dseed=X to set PRNG seed)
* @author Joseph D. Darcy
* @key randomness
*/
import jdk.test.lib.RandomFactory;
public class CubeRootTests {
private CubeRootTests(){}
static final double infinityD = Double.POSITIVE_INFINITY;
static final double NaNd = Double.NaN;
// Initialize shared random number generator
static java.util.Random rand = RandomFactory.getRandom();
static int testCubeRootCase(double input, double expected) {
int failures=0;
double minus_input = -input;
double minus_expected = -expected;
failures+=Tests.test("Math.cbrt(double)", input,
Math.cbrt(input), expected);
failures+=Tests.test("Math.cbrt(double)", minus_input,
Math.cbrt(minus_input), minus_expected);
failures+=Tests.test("StrictMath.cbrt(double)", input,
StrictMath.cbrt(input), expected);
failures+=Tests.test("StrictMath.cbrt(double)", minus_input,
StrictMath.cbrt(minus_input), minus_expected);
return failures;
}
static int testCubeRoot() {
int failures = 0;
double [][] testCases = {
{NaNd, NaNd},
{Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
{Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
{Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
{Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
{Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
{Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
{Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
{Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
{Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
{Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
{Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY},
{Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY},
{+0.0, +0.0},
{-0.0, -0.0},
{+1.0, +1.0},
{-1.0, -1.0},
{+8.0, +2.0},
{-8.0, -2.0}
};
for(int i = 0; i < testCases.length; i++) {
failures += testCubeRootCase(testCases[i][0],
testCases[i][1]);
}
// Test integer perfect cubes less than 2^53.
for(int i = 0; i <= 208063; i++) {
double d = i;
failures += testCubeRootCase(d*d*d, (double)i);
}
// Test cbrt(2^(3n)) = 2^n.
for(int i = 18; i <= Double.MAX_EXPONENT/3; i++) {
failures += testCubeRootCase(Math.scalb(1.0, 3*i),
Math.scalb(1.0, i) );
}
// Test cbrt(2^(-3n)) = 2^-n.
for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) {
failures += testCubeRootCase(Math.scalb(1.0, 3*i),
Math.scalb(1.0, i) );
}
// Test random perfect cubes. Create double values with
// modest exponents but only have at most the 17 most
// significant bits in the significand set; 17*3 = 51, which
// is less than the number of bits in a double's significand.
long exponentBits1 =
Double.doubleToLongBits(Math.scalb(1.0, 55)) &
DoubleConsts.EXP_BIT_MASK;
long exponentBits2=
Double.doubleToLongBits(Math.scalb(1.0, -55)) &
DoubleConsts.EXP_BIT_MASK;
for(int i = 0; i < 100; i++) {
// Take 16 bits since the 17th bit is implicit in the
// exponent
double input1 =
Double.longBitsToDouble(exponentBits1 |
// Significand bits
((long) (rand.nextInt() & 0xFFFF))<<
(DoubleConsts.SIGNIFICAND_WIDTH-1-16));
failures += testCubeRootCase(input1*input1*input1, input1);
double input2 =
Double.longBitsToDouble(exponentBits2 |
// Significand bits
((long) (rand.nextInt() & 0xFFFF))<<
(DoubleConsts.SIGNIFICAND_WIDTH-1-16));
failures += testCubeRootCase(input2*input2*input2, input2);
}
// Directly test quality of implementation properties of cbrt
// for values that aren't perfect cubes. Verify returned
// result meets the 1 ulp test. That is, we want to verify
// that for positive x > 1,
// y = cbrt(x),
//
// if (err1=x - y^3 ) < 0, abs((y_pp^3 -x )) < err1
// if (err1=x - y^3 ) > 0, abs((y_mm^3 -x )) < err1
//
// where y_mm and y_pp are the next smaller and next larger
// floating-point value to y. In other words, if y^3 is too
// big, making y larger does not improve the result; likewise,
// if y^3 is too small, making y smaller does not improve the
// result.
//
// ...-----|--?--|--?--|-----... Where is the true result?
// y_mm y y_pp
//
// The returned value y should be one of the floating-point
// values braketing the true result. However, given y, a
// priori we don't know if the true result falls in [y_mm, y]
// or [y, y_pp]. The above test looks at the error in x-y^3
// to determine which region the true result is in; e.g. if
// y^3 is smaller than x, the true result should be in [y,
// y_pp]. Therefore, it would be an error for y_mm to be a
// closer approximation to x^(1/3). In this case, it is
// permissible, although not ideal, for y_pp^3 to be a closer
// approximation to x^(1/3) than y^3.
//
// We will use pow(y,3) to compute y^3. Although pow is not
// correctly rounded, StrictMath.pow should have at most 1 ulp
// error. For y > 1, pow(y_mm,3) and pow(y_pp,3) will differ
// from pow(y,3) by more than one ulp so the comparision of
// errors should still be valid.
for(int i = 0; i < 1000; i++) {
double d = 1.0 + rand.nextDouble();
double err, err_adjacent;
double y1 = Math.cbrt(d);
double y2 = StrictMath.cbrt(d);
err = d - StrictMath.pow(y1, 3);
if (err != 0.0) {
if(Double.isNaN(err)) {
failures++;
System.err.println("Encountered unexpected NaN value: d = " + d +
"\tcbrt(d) = " + y1);
} else {
if (err < 0.0) {
err_adjacent = StrictMath.pow(Math.nextUp(y1), 3) - d;
}
else { // (err > 0.0)
err_adjacent = StrictMath.pow(Math.nextAfter(y1,0.0), 3) - d;
}
if (Math.abs(err) > Math.abs(err_adjacent)) {
failures++;
System.err.println("For Math.cbrt(" + d + "), returned result " +
y1 + "is not as good as adjacent value.");
}
}
}
err = d - StrictMath.pow(y2, 3);
if (err != 0.0) {
if(Double.isNaN(err)) {
failures++;
System.err.println("Encountered unexpected NaN value: d = " + d +
"\tcbrt(d) = " + y2);
} else {
if (err < 0.0) {
err_adjacent = StrictMath.pow(Math.nextUp(y2), 3) - d;
}
else { // (err > 0.0)
err_adjacent = StrictMath.pow(Math.nextAfter(y2,0.0), 3) - d;
}
if (Math.abs(err) > Math.abs(err_adjacent)) {
failures++;
System.err.println("For StrictMath.cbrt(" + d + "), returned result " +
y2 + "is not as good as adjacent value.");
}
}
}
}
// Test monotonicity properites near perfect cubes; test two
// numbers before and two numbers after; i.e. for
//
// pcNeighbors[] =
// {nextDown(nextDown(pc)),
// nextDown(pc),
// pc,
// nextUp(pc),
// nextUp(nextUp(pc))}
//
// test that cbrt(pcNeighbors[i]) <= cbrt(pcNeighbors[i+1])
{
double pcNeighbors[] = new double[5];
double pcNeighborsCbrt[] = new double[5];
double pcNeighborsStrictCbrt[] = new double[5];
// Test near cbrt(2^(3n)) = 2^n.
for(int i = 18; i <= Double.MAX_EXPONENT/3; i++) {
double pc = Math.scalb(1.0, 3*i);
pcNeighbors[2] = pc;
pcNeighbors[1] = Math.nextDown(pc);
pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
pcNeighbors[3] = Math.nextUp(pc);
pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
for(int j = 0; j < pcNeighbors.length; j++) {
pcNeighborsCbrt[j] = Math.cbrt(pcNeighbors[j]);
pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
}
for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
if(pcNeighborsCbrt[j] > pcNeighborsCbrt[j+1] ) {
failures++;
System.err.println("Monotonicity failure for Math.cbrt on " +
pcNeighbors[j] + " and " +
pcNeighbors[j+1] + "\n\treturned " +
pcNeighborsCbrt[j] + " and " +
pcNeighborsCbrt[j+1] );
}
if(pcNeighborsStrictCbrt[j] > pcNeighborsStrictCbrt[j+1] ) {
failures++;
System.err.println("Monotonicity failure for StrictMath.cbrt on " +
pcNeighbors[j] + " and " +
pcNeighbors[j+1] + "\n\treturned " +
pcNeighborsStrictCbrt[j] + " and " +
pcNeighborsStrictCbrt[j+1] );
}
}
}
// Test near cbrt(2^(-3n)) = 2^-n.
for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) {
double pc = Math.scalb(1.0, 3*i);
pcNeighbors[2] = pc;
pcNeighbors[1] = Math.nextDown(pc);
pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
pcNeighbors[3] = Math.nextUp(pc);
pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
for(int j = 0; j < pcNeighbors.length; j++) {
pcNeighborsCbrt[j] = Math.cbrt(pcNeighbors[j]);
pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
}
for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
if(pcNeighborsCbrt[j] > pcNeighborsCbrt[j+1] ) {
failures++;
System.err.println("Monotonicity failure for Math.cbrt on " +
pcNeighbors[j] + " and " +
pcNeighbors[j+1] + "\n\treturned " +
pcNeighborsCbrt[j] + " and " +
pcNeighborsCbrt[j+1] );
}
if(pcNeighborsStrictCbrt[j] > pcNeighborsStrictCbrt[j+1] ) {
failures++;
System.err.println("Monotonicity failure for StrictMath.cbrt on " +
pcNeighbors[j] + " and " +
pcNeighbors[j+1] + "\n\treturned " +
pcNeighborsStrictCbrt[j] + " and " +
pcNeighborsStrictCbrt[j+1] );
}
}
}
}
return failures;
}
public static void main(String argv[]) {
int failures = 0;
failures += testCubeRoot();
if (failures > 0) {
System.err.println("Testing cbrt incurred "
+ failures + " failures.");
throw new RuntimeException();
}
}
}
|